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A FINITE VOLUME METHOD FOR NONLOCAL COMPETITION-MUTATION
EQUATIONS WITH A GRADIENT FLOW STRUCTURE
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Abstract. In this paper, we design, analyze and numerically validate energy dissipating finite volume
schemes for a competition-mutation equation with a gradient flow structure. The model describes the
evolution of a population structured with respect to a continuous trait. Both semi-discrete and fully
discrete schemes are demonstrated to satisfy the two desired properties: positivity of numerical solutions
and energy dissipation. These ensure that the positive steady state is asymptotically stable. Moreover,
the discrete steady state is proven to be the same as the minimizer of a discrete energy function. As a
comparison, the positive steady state can also be produced by a nonlinear programming solver. Finally,
a series of numerical tests is provided to demonstrate both accuracy and the energy dissipation property
of the numerical schemes. The numerical solutions of the model with small mutation are shown to be
close to those of the corresponding model with linear competition.
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1. Introduction

In this work, we are concerned with the problem governed by

∂tf(t, x) = Δf(t, x) +
1
2
f(t, x)

(
a(x) −

∫
X

b(x, y)f2(t, y)dy

)
, t > 0, x ∈ X, (1.1a)

f(0, x) = f0(x) ≥ 0, x ∈ X, (1.1b)
∂f

∂ν
= 0, x ∈ ∂X, (1.1c)

where X is a subdomain of Rd, and ν is the unit outward normal at a point x on the boundary ∂X . This is
an intergro-differential equation that describes the evolution of a population of density f(t, x) structured with
respect to a continuous trait x. In this model, the diffusion term plays certain role of mutations in the population
dynamics. In the model, coefficient a(x) is the intrinsic growth rate of individuals with trait x, and b(x, y) > 0
represents the competitive interaction between individuals. The trait dependent competition as such appears
in many population balance models of Lotka-Volterra type, see e.g., [4, 12, 15, 16]. In particular, the nonlinear
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competition effect does appear in the model for fish species population introduced in [33] in the study of the
effect of exploitation on these species. Their model when the number of fish species tend to infinity formally
leads to a continuous model of the form

∂tf(t, x) =
1
2
f(t, x)

(
a(x) −

∫
X

b(x, y)(f(t, y) − d(x, y))2dy

)
.

This equation with d = 0 when augmented with a mutation term Δf is exactly (1.1a).
For rare mutation, the diffusion term may be dropped from model (1.1a), the resulting equation under the

transformation u = f2 reduces to the model with linear competition,

∂tu(t, x) = u(t, x)
(

a(x) −
∫

X

b(x, y)u(t, y)dy

)
.

Such a simplified model with the usual mutation has been derived from random stochastic models of finite
populations (see [7, 8]). This competition model or its variation arises not only in evolution theory but also in
ecology for non-local resources (and x denotes the location there, see e.g. [5, 13, 18]).

The model without mutation is interesting from the point of view of asymptotic behavior; one expects that
the population density concentrates at large times, see, e.g., [2,6,12,20,32]. The singular steady-state solutions
of the competition model correspond to highly concentrated population densities of the form of well separated
Dirac masses, which have been shown to happen only asymptotically in models with mutation [3,9,26–28,30,31].

The main attractive feature of model (1.1a) is its gradient flow structure in the sense that (1.1a) can be
written as

∂tf = −1
2

δF

δf
, (1.2)

where the corresponding energy functional is

F [f ] =
1
4

∫ ∫
b(x, y)f2(t, x)f2(t, y)dxdy − 1

2

∫
a(x)f2(t, x)dx +

∫
|∇xf(t, x)|2dx, (1.3)

so that the energy dissipation law d
dtF [f ] = −2

∫ |∂tf |2dx ≤ 0 holds for all t > 0, at least for classical solutions.
There is a large literature on the subject, in terms of modeling and analysis, around the model with linear
competition and mutation of the form

∂tu(t, x) = Δu + u(t, x)
(

a(x) −
∫

X

b(x, y)u(t, y)dy

)
. (1.4)

However, the large time solution behavior of this model remains a challenging issue due to lack of a gradient
flow structure. Nevertheless, for b(x, y) = η(y) > 0, the asymptotic solution behavior when mutation tends to
vanish has been well studied, see e.g., [3, 28, 31]. There are also other similar models, for example, model (1.4)
with b(x, y) = a(y) is studied in [1] through explicit solutions due to its special structure.

The aim of the present investigation is to design finite volume schemes to produce numerical solutions with
satisfying long-time dynamics. This is achieved through a proper discretization, so that numerical solution

fn
j ∼ 1

h

∫
Ij

f(nΔt, x)dx,

approximates f(nΔt, x) over the cell Ij indexed by 1 ≤ j ≤ N (in one dimensional case), with ∪Ij = X , where
Δt is the time step and h the spatial mesh size; and the discrete energy

F (f) =

⎡
⎣h

4

N∑
j,i=1

b̄jif
2
j f2

i − 1
2

N∑
j=1

āj(fj)2 +
N−1∑
j=1

(
fj+1 − fj

h

)2
⎤
⎦h, (1.5)
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satisfies the energy dissipation inequality

F (fn+1) − F (fn) ≤ −h

N∑
j=1

(fn+1
j − fn

j )2

Δt

for Δt relative to the spatial mesh size is suitably small.
Under reasonable assumptions we are able to show that the problem of finding the discrete positive steady

state is equivalent to solving a nonlinear optimization problem:

min
f∈RN

F (f),

subject to f ∈ {f | f ≥ 0}.
The discrete energy (1.5), as a powerful tool, is further employed to prove the asymptotic stability of the steady
state for both the semi-discrete and fully discrete numerical schemes as time tends to infinity. Note that in this
work we derive the semi-discrete scheme by directly taking the cell average of the PDE. It may also be seen as
a finite difference scheme and can be derived from the discrete version of the energy defined in (1.5) via,

d
dt

fj = − 1
2h

∂fj F (f). (1.6)

For derivation of structure preserving finite difference schemes from some discrete energy for a set of PDEs
other than (1.1) we refer to the book [14] by Furihata and Matsuo.

Numerical experiments are performed to test both accuracy and the energy dissipation property of the
numerical schemes. Numerical solutions at different times are given to show time-asymptotic convergence toward
the positive steady state. Moreover, for small mutation coefficients, we illustrate how the amount of mutation
affects the solution behavior.

The organization of this paper is as follows. In Section 2, we first propose the semi-discrete finite volume
scheme, and then prove the existence and uniqueness of positive steady state through the equivalence between
the problem of finding the positive steady state and the associated nonlinear optimization problem. Thus, the
positive steady state can also be independently obtained by a well-established nonlinear programming solver.
In Section 2.2, we prove that the semi-discrete scheme satisfies both positivity and energy dissipation property
under some conditions on the discrete coefficients, which guarantees that the positive steady state for the semi-
discrete scheme is asymptotically stable. Section 3 is devoted to a fully discrete scheme, which is semi-implicit
and easy to implement. The fully discrete scheme is shown to be positivity preserving and energy decreasing
under an appropriate restriction on the time step. In addition, the positive steady state for the fully discrete
scheme is also shown to be asymptotically stable. In Section 4 we discuss how to design structure-preserving high
order schemes. Section 5 is devoted to some numerical tests using the proposed schemes and the computation of
the positive steady state through a nonlinear optimization solver. The numerical solutions of the scheme with
small mutation are also compared with the solutions to the direct competition model. Finally, some concluding
remarks are given in Section 6.

2. Scheme formulation and discrete properties

In order to design an energy dissipating method for capturing the large time behavior of selection-mutation
dynamics (1.1), we make the following basic assumptions:

a ∈ L∞(X), |{x | a(x) > 0}| �= 0; (2.1a)
b ∈ L∞(X × X), essinfx,x′∈Xb(x, x′) > 0, b(x, y) = b(y, x); (2.1b)

∀g ∈ L1(X)\{0},
∫ ∫

b(x, y)g(x)g(y)dxdy > 0. (2.1c)
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These assumptions are sufficient for the existence of solutions of the problem under consideration. For simplicity
of presentation, we restrict ourselves to one dimensional setting with X = [−1, 1]. Partition X into subcells
Ij = (xj−1/2, xj+1/2)(j = 1, . . . , N) of uniform mesh h = 2/N so that xj−1/2 = x1/2 + (j − 1)h with x1/2 = −1,
xN+1/2 = 1. We consider the following semi-discrete scheme

d
dt

fj =
fj+1 − 2fj + fj−1

h2
+

1
2
fj

(
āj − h

N∑
i=1

b̄jif
2
i

)
, 1 ≤ j ≤ N, (2.2)

where
f0 = f1, fN+1 = fN ,

āj =
1
h

∫
Ij

a(x)dx, b̄ji =
1
h2

∫
Ii

∫
Ij

b(x, y)dxdy, (2.3)

and the numerical solution fj(t) approximates the cell average of the exact solution f ,

f̄j(t) =
1
h

∫
Ij

f (t, x) dx.

2.1. Existence and uniqueness of the discrete positive steady state

We denote f = (f1, f2, . . . , fN )T, and define the feasible set

S = {f ∈ RN | f ≥ 0}.
As a nonlinear dynamical system, the large time behavior of solutions to (2.2) is closely related to the steady
states f̃ ∈ S satisfying

−f̃1 + f̃2

h2
+

1
2
f̃1

(
ā1 − h

N∑
i=1

b̄1if̃
2
i

)
= 0, (2.4a)

f̃j−1 − 2f̃j + f̃j+1

h2
+

1
2
f̃j

(
āj − h

N∑
i=1

b̄jif̃
2
i

)
= 0, j = 2, . . . , N − 1, (2.4b)

f̃N−1 − f̃N

h2
+

1
2
f̃N

(
āN − h

N∑
i=1

b̄Nif̃
2
i

)
= 0. (2.4c)

From assumptions (2.1) it follows at the discrete level some similar assumptions:

|āj | ≤ ‖a‖L∞, {1 ≤ j ≤ N, āj > 0} �= ∅; (2.5a)
0 < bf ≤ b̄ji ≤ ‖b‖L∞ and b̄ji = b̄ij , for 1 ≤ i, j ≤ N ; (2.5b)

N∑
j=1

N∑
i=1

b̄jigigj > 0 for any gj such that
N∑

j=1

|gj |2 �= 0. (2.5c)

(2.5c) implies that B = (b̄ij)N×N is a positive definite matrix. These assumptions ensure the existence and
uniqueness of positive steady states.

We first show the uniqueness.

Theorem 2.1. Let f̃ be a non-negative solution to (2.4), then

(i) either f̃ > 0 or f̃ = 0, and
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(ii) positive steady state f̃ is unique.

Proof.

(i) Suppose f̃j0 = 0 for some 1 ≤ j0 ≤ N , then the j0th equation of (2.4) can be written as

f̃j0−1 + f̃j0+1

h2
= 0,

and note that f̃j ≥ 0 for all 1 ≤ j ≤ N , we must have f̃j0±1 = 0. Repeating this procedure, we can conclude
that f̃j = 0 for all 1 ≤ j ≤ N .

(ii) Suppose f̃ and g̃ are two positive steady solutions to (2.4) so that

I := h2
N∑

j,i=1

b̄ji(f̃2
j − g̃2

j )(f̃2
i − g̃2

i ) ≥ 0. (2.6)

On the other hand,

I = h2
N∑

j,i=1

b̄ji(f̃2
j − g̃2

j )f̃2
i − h2

N∑
j,i=1

b̄ji(f̃2
j − g̃2

j )g̃2
i

= h

N∑
j=1

(f̃j − g̃2
j /f̃j)f̃jh

N∑
i=1

b̄jif̃
2
i + h

N∑
j=1

(g̃j − f̃2
j /g̃j)g̃jh

N∑
i=1

b̄jig̃
2
i .

Then, using equation (2.4), we proceed

I = h

N∑
j=1

[
(f̃j − g̃2

j /f̃j)

(
2(f̃j−1 − 2f̃j + f̃j+1)

h2
+ āj f̃j

)

+(g̃j − f̃2
j /g̃j)

(
2(g̃j−1 − 2g̃j + g̃j+1)

h2
+ āj g̃j

)]

=
2
h

N∑
j=1

(
f̃j−1f̃j + f̃j f̃j+1 −

f̃j−1g̃
2
j

f̃j

− f̃j+1g̃
2
j

f̃j

+ g̃j−1g̃j + g̃j g̃j+1 −
f̃2

j g̃j−1

g̃j
− f̃2

j g̃j+1

g̃j

)
,

when using the notation f̃0 = f̃1, f̃N+1 = f̃N , g̃0 = g̃1 and g̃N+1 = g̃N . We have

I =
2
h

N−1∑
j=1

(
2f̃j f̃j+1 −

f̃j g̃
2
j+1

f̃j+1

− f̃j+1g̃
2
j

f̃j

+ 2g̃j g̃j+1 −
f̃2

j+1g̃j

g̃j+1
− f̃2

j g̃j+1

g̃j

)

= − 2
h

N−1∑
j=1

[
(f̃j g̃j+1 − f̃j+1g̃j)2

g̃j g̃j+1
+

(f̃j g̃j+1 − f̃j+1g̃j)2

f̃j f̃j+1

]
≤ 0,

which means that I is both nonnegative and nonpositive according to (2.6). Therefore f̃ = g̃. �

For the existence of f̃ , we define the discrete Lyapunov functional as follows

F (f) =

⎛
⎝1

4

N∑
j,i=1

b̄jif
2
j f2

i h − 1
2

N∑
j=1

ājf
2
j +

N−1∑
j=1

(
fj+1 − fj

h

)2
⎞
⎠ h. (2.7)
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In fact, the positive steady state can be expressed as a solution to the following optimization problem

min
f∈RN

F, (2.8a)

subject to f ∈ S = {f ∈ RN |f ≥ 0}. (2.8b)

Lemma 2.2. If (2.5) holds, then the minimizer of nonlinear optimization problem (2.8) is the same as the
positive solution of (2.4).

Proof. Let g be a solution to problem (2.8), we now show g = f̃ , which is the unique positive steady state. A
simple calculation gives

∂F

∂fj

∣∣∣
f=g

= −2h

{
gj−1 − 2gj + gj+1

h2
+

1
2
gj

(
āj − h

N∑
i=1

b̄jig
2
i

)}
, 1 ≤ j ≤ N

with notations g0 = g1 and gN+1 = gN . If one component of g ∈ S is zero, we must have

∂F

∂fj

∣∣∣
f=g

≥ 0,

which when combined with g ∈ S ensures that g ≡ 0. Otherwise, if g is strictly positive, then we have

∂F

∂fj

∣∣∣
f=g

= 0, 1 ≤ j ≤ N,

which is the same relation as (2.4). By the uniqueness of the positive solution to (2.4), we much have g = f̃ .
We next prove F (f̃) < F (0), which ensures that g cannot be zero. A direct calculation using summation by

parts gives

N−1∑
j=1

(f̃j+1 − f̃j)2

h
= −

N∑
j=1

f̃j(f̃j+1 − 2f̃j − f̃j−1)
h

· (2.9)

Multiplying the jth equation in (2.4) by f̃jh, and summing from j = 1 to N , we have

−
N∑

j=1

f̃j(f̃j+1 − 2f̃j − f̃j−1)
h

=
h

2

N∑
j=1

āj f̃
2
j − h2

2

N∑
j,i=1

b̄jif̃
2
j f̃2

i . (2.10)

With (2.9) and (2.10), the functional F (f̃) can be reduced to

F (f̃) = −h2

4

N∑
j,i=1

b̄jif̃
2
j f̃2

i < 0 = F (0). (2.11)

Finally, let f̃ be the positive steady state, then f̃ must be the unique critical point of F in the interior of S.
Assume that a minimizer g can be achieved on the boundary of S, then the above argument shows that g = 0.
This together with the fact that F (f̃) < F (0) and F (∞) = ∞ suggests that f̃ is also the solution to (2.8). �

Armed with this result, we are left to show F (·) admits a unique minimizer among elements in S.
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Lemma 2.3. For fixed N > 0, if āi > 0 for some i, b̄ij ≥ 0 for all i, j and (b̄ij) is positive definite, then there
exists only one nontrivial vector g ∈ S such that

F (g) = min
f∈S

F (f).

Proof. Note that S is nonempty and closed. For positive definite matrix B, F (f) is bounded from below, i.e.,

−|a|2∞N

4λmin
≤ h2

4
λmin

N∑
j=1

f4
j − h

2
‖a‖L∞

N∑
j=1

f2
j ≤ F (f), (2.12)

where λmin > 0 is the smallest eigenvalue of B. Set m := inff∈S F (f), then m is finite. Select a minimizing
sequence {f (n)}∞n=1, so that

F (f (n)) → m.

Thus, (2.12) implies that {f (n)}∞n=1 is bounded in S ⊂ RN . By the Bolzano–Weierstrass theorem, there exists
a subsequence {f (nk)}∞k=1 that converges to g. We assert that the limit g ∈ S for S is closed. By continuity of
F (f),

m = lim
k→∞

F (f (nk)) = F (g).

Hence, F (g) = m = minf∈S F (f), and g = f̃ > 0 is unique by the claim of Lemma 2.2. �

Combining Lemma 2.2 with Lemma 2.3, we have the following.

Theorem 2.4. If (2.5) holds, then there exists a unique positive steady state as defined in (2.4).

Hence, the positive steady state can be obtained by solving nonlinear optimization problem (2.8).

2.2. Properties of the semi-discrete scheme

As noted above, when applicable, the vector notation f(t) = (f1(t), . . . , fN(t))T is used.

Theorem 2.5. Assume (2.5) holds, and let f(t) be the numerical solution to the semi-discrete scheme (2.2).
Then,

(i) if fj(0) ≥ 0 for every 1 ≤ j ≤ N , then

fj(t) ≥ 0 for any 1 ≤ j ≤ N and any t > 0.

(ii) F is non-increasing in time. Moreover,

dF

dt
= −2h

N∑
j=1

(
dfj

dt

)2

≤ 0. (2.13)

Proof.

(i) Define
Ω = {f ∈ RN | f ≥ 0}.

The claimed positivity preserving property follows if Ω is an invariant region. Note that 0 is an equilibrium
solution to (2.2), it suffices to show

df

dt
· ν :=

N∑
j=1

νj
dfj

dt
< 0, ∀f ∈ ∂Ω\{0},
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where ν is the outward normal vector at ∂Ω, which can be defined by

νj =
{−1, if j ∈ S0,

0, elsewhere.

Here we use the index set
S0 = {1 ≤ j ≤ N | fj = 0, f ∈ ∂Ω}.

It follows that

df

dt
· ν = −

∑
j∈S0

fj−1 + fj+1

h2
< 0,

for one of the following two cases must appear: there exists j0 ∈ S0, then

fj0 = 0, fj0+1 > 0 or fj0 = 0, fj0−1 > 0.

This is due to the fact that S is neither empty nor {1, . . . , N} for f ∈ ∂Ω\{0}. The desired positivity property
is thus proved.

(ii) By a direct calculation,

dF

dt
= h

N∑
j=1

(
1
2
fj

dfj

dt
h

N∑
i=1

b̄jif
2
i +

1
2
f2

j h

N∑
i=1

b̄jifi
dfi

dt
− ājfj

dfj

dt

)
(2.14)

+ h

N−1∑
j=1

[
2(fj+1 − fj)

h2

(
dfj+1

dt
− dfj

dt

)]

=: −h

N∑
j=1

dfj

dt
fj

(
āj − h

N∑
i=1

b̄jif
2
i

)
+ 2T,

where b̄ij = b̄ji has been used. Next, we estimate T . Using the notation f0 = f1 and fN+1 = fN , we have

T =
1
h

⎡
⎣N−1∑

j=1

dfj+1

dt
(fj+1 − fj) −

N−1∑
j=1

dfj

dt
(fj+1 − fj)

⎤
⎦

= −h
N∑

j=1

dfj

dt

fj−1 − 2fj + fj+1

h2
·

Substitution of this into (2.14), together with (2.2) leads to the desired property (2.13). �

We may also examine the large time behavior of f(t).

Theorem 2.6. For fixed N ≥ 0, assume (2.5) holds, and f̃ is the positive steady state. Let the initial data f(0)
be positive and F (f(0)) < 0, and f(t) be the numerical solution generated from semi-discrete scheme (2.2), then

lim
t→∞ f(t) = f̃ . (2.15)

Proof. Define a set
Σ = {f = (f1, f2, . . . , fN) ∈ RN |f > 0, F (f) < 0}.

Then both f̃ and initial data f(0) are in Σ.
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On this set we define a functional V (f) by

V (f) = F (f) − F (f̃),

which implies that d
dtV = d

dtF . We see that V (f̃) = d
dtV (f̃) = 0. Furthermore, V satisfies the following

properties:

(1) V (f) > 0 for any f ∈ Σ\f̃(positive definite);
(2) d

dtV ≤ 0 for all f ∈ Σ(non-increasing in time);
(3) V (f) → ∞, if |f | → ∞.

Note also that the set {V̇ (f) = 0}⋂
Σ contains no trajectory of system (2.2) except the trivial trajectory

f(t) = f̃ for t ≥ 0. We can therefore apply the local Krasovskii–LaSalle principle [21] to conclude that

lim
t→∞ f(t) = f̃ ,

which leads to the desired result.
The last two properties are easy to verify by (2.13) and the form of F . We next only verify property (1). For

arbitrary τ ≥ 0 and ∀g such that f = f̃ + τg ∈ Σ, we let s(τ) = F (f) − F (f̃), then a direct calculation upon
regrouping leads to

s′(τ) = −2h

N∑
j=1

gj

[
1
2
fj

(
āj − h

N∑
i=1

b̄jif
2
i

)
+

fj−1 − 2fj + fj+1

h2

]
· (2.16)

In order that s′(τ) = 0 for arbitrary f ∈ Σ and arbitrary g, the following is necessarily satisfied

1
2
fj

(
āj − h

N∑
i=1

b̄jif
2
i

)
+

fj−1 − 2fj + fj+1

h2
= 0.

Hence we have f = f̃ by the uniqueness of the positive steady solution, i.e., τ = 0. This says that f̃ is the only
critical point of V (f), and V (f̃) = 0, which when combined with (3) ensures (1). �

3. Time discretization

We propose the following fully discrete scheme

fn+1
j − fn

j

Δt
=

fn+1
j−1 − 2fn+1

j + fn+1
j+1

h2
+

1
2
fn+1

j

(
āj − h

N∑
i=1

b̄ji(fn
i )2

)
, (3.1)

with
fn
0 = fn

1 , fn
N+1 = fn

N .

This scheme is semi-implicit, linear in fn+1, hence easy to implement. We next show that such a scheme also
preserves both positivity and energy dissipation property under certain restriction on the time step.

To proceed, we set the discrete energy as

Fn = F (fn) =

⎡
⎣1

4

N∑
j,i=1

b̄ji(fn
j )2(fn

i )2h − 1
2

N∑
j=1

āj(fn
j )2 +

N−1∑
j=1

(
fn

j+1 − fn
j

h

)2
⎤
⎦ h. (3.2)

For later use, we present a uniform L1-bound and L2-bound of the numerical solution when b ≥ bf > 0. Let
γ = ‖a‖L∞/bf which will be used to quantify the uniform bound.
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Lemma 3.1. Assume (2.5) holds. Let fn be the numerical solution generated from scheme (3.1) with nonneg-
ative initial data f0 ≥ 0, and ‖f0‖2 < ∞. Then, for any n ∈ N,

‖fn‖2 ≤ max
{‖f0‖2,

√
γ
}

, ‖fn‖1 ≤ max
{√

2‖f0‖2,
√

2γ
}

, (3.3)

provided

Δt ≤ 1
‖a‖L∞

· (3.4)

Proof. Let Qn = h
N∑

j=1

(fn
j )2 = ‖fn‖2

2. Multiplying fn+1
j h on both sides of scheme (3.1) and then summing over

j from 1 to N , we have

h
N∑

j=1

(fn+1
j )2 − fn+1

j fn
j

Δt
=

N∑
j=1

fn+1
j−1 fn+1

j − 2(fn+1
j )2 + fn+1

j fn+1
j+1

h
(3.5)

+
h

2

N∑
j=1

(fn+1
j )2

(
āj − h

N∑
i=1

b̄ji(fn
i )2

)
.

The term on the left hand side can be written as

h

N∑
j=1

[
(fn+1

j )2 − (fn
j )2

2Δt
+

(fn+1
j − fn

j )2

2Δt

]
,

and the second term on the right hand side of (3.5) can be estimated as

≤ 1
2

max
1≤j≤N

|āj − h

N∑
i=1

b̄ji(fn
i )2|Qn+1

≤ 1
2

(‖a‖L∞ − bfQn)Qn+1.

The first term on the right hand side of (3.5) is non-negative since

1
h

⎡
⎣2

N∑
j=2

fn+1
j fn+1

j−1 − 2
N∑

j=1

(fn+1
j )2 + (fn+1

1 )2 + (fn+1
N )2

⎤
⎦ ≤

1
h

⎡
⎣ N∑

j=2

(fn+1
j )2 +

N∑
j=2

(fn+1
j−1 )2 − 2

N∑
j=1

(fn+1
j )2 + (fn+1

1 )2 + (fn+1
N )2

⎤
⎦ = 0,

where we have used the notation f0 = f1 and fN+1 = fN , and the Cauchy–Schwarz inequality.
Combining the above estimates, we obtain

Qn+1 ≤ Qn + Δt (‖a‖L∞ − bfQn)Qn+1.

There are two cases to distinguish:

(i) if Qn ≥ γ, then Qn+1 ≤ Qn;
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(ii) if Qn < γ, we rewrite

Qn+1 − γ ≤ (Qn − γ)(1 − ΔtQn+1bf).

According to (3.4), we have

Qn+1 − γ ≤ (Qn − γ)
(

1 − Qn+1

γ

)
,

which leads to Qn+1 ≤ γ. Hence,

Qn+1 ≤ max{Qn, γ} ≤ . . . ≤ max{Q0, γ}.

Furthermore, using the Cauchy–Schwarz inequality, we have ‖fn‖1 ≤ √
2‖fn‖2. These ensure the claimed

estimate (3.3). �

Theorem 3.2. Assume (2.5) is satisfied, and let fn be the numerical solution to the fully-discrete scheme (3.1)
with time step satisfying

Δt ≤ min

{
1

‖a‖L∞
,

h
h
2 (‖a‖L∞ + C‖b‖L∞) + 2C‖b‖L∞

}
, (3.6)

where C = max{‖f0‖2
2, ‖a‖L∞/bf}. Then,

(i) if fn
j > 0 for every 1 ≤ j ≤ N , then fn+1

j > 0 for any 1 ≤ j ≤ N and any n ∈ N;
(ii) Fn is a decreasing sequence in n. Moreover,

Fn+1 − Fn ≤ −h
N∑

j=1

(fn+1
j − fn

j )2

Δt
· (3.7)

Proof.

(i) Rearranging (3.1), we have

−Δt

h2
fn+1

j−1 +

{
1 +

2Δt

h2
− Δt

2

[
āj − h

N∑
i=1

b̄ji(fn
i )2

]}
fn+1

j − Δt

h2
fn+1

j+1 = fn
j .

Let fn+1
j0

= min1≤j≤N fn+1
j , then the j0th equation gives

0 ≤ fn
j0 = −Δt

h2
fn+1

j0−1 +

{
1 +

2Δt

h2
− Δt

2

[
āj0 − h

N∑
i=1

b̄j0i(fn
i )2

]}
fn+1

j0
− Δt

h2
fn+1

j0+1

≤
{

1 − Δt

2

[
āj0 − h

N∑
i=1

b̄j0i(fn
i )2

]}
fn+1

j0
·

From Δt ≤ 1/‖a‖L∞ as implied by (3.6), we see that the coefficient of fn+1
j0

is strictly positive, therefore
fn+1

j0
≥ 0, which means fn+1

j ≥ 0 for all 1 ≤ j ≤ N . Specially, if fn
j > 0 for every 1 ≤ j ≤ N , then fn+1

j > 0 for
all 1 ≤ j ≤ N .
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(ii) We proceed to estimate Fn+1 − Fn as follows:

Fn+1 − Fn =
h2

4

N∑
i,j=1

b̄ji

[
(fn+1

j )2(fn+1
i )2 − (fn

j )2(fn
i )2

]

− h

2

N∑
j=1

āj(fn+1
j − fn

j )(fn+1
j + fn

j )

+
1
h

N−1∑
j=1

[
(fn+1

j+1 − fn+1
j )2 − (fn

j+1 − fn
j )2

]
. (3.8)

Due to symmetry of b̄ij , the first term on the right can be written as

h2

4

N∑
i,j=1

b̄ji

[
(fn+1

j )2 − (fn
j )2

] [
(fn+1

i )2 + (fn
i )2

]
.

Summation by parts when applied to the third term on the right of (3.8) gives

I3 :=
1
h

N−1∑
j=1

[
fn+1

j+1 − fn
j+1 − (fn+1

j − fn
j )

] [
fn+1

j+1 + fn
j+1 − (fn+1

j + fn
j )

]

= − 1
h

N∑
j=1

(fn+1
j − fn

j )(ωn+1
j + ωn

j ),

where ωn+1
j = fn+1

j−1 − 2fn+1
j + fn+1

j+1 .

Substitution of these into (3.8) gives

Fn+1 − Fn = − h

N∑
j=1

(
fn+1

j − fn
j

)
Aj

where, using the scheme (3.1), we have

Aj =
ωn+1

j + ωn
j

h2
+

1
2
(fn+1

j + fn
j )

[
āj − h

N∑
i=1

b̄ji(fn
i )2 − h

2

N∑
i=1

b̄ji

(
(fn+1

i )2 − (fn
i )2

)]

= 2
fn+1

j − fn
j

Δt
− ωn+1

j − ωn
j

h2
− fn+1

j − fn
j

2

(
āj − h

N∑
i=1

b̄ji(fn
i )2

)

− h

4
(fn+1

j + fn
j )

N∑
i=1

b̄ji

(
(fn+1

i )2 − (fn
i )2

)
.



A FV METHOD FOR COMPETITION-MUTATION EQUATIONS 1235

Hence

Fn+1 − Fn = − 2h
N∑

j=1

(
fn+1

j − fn
j

)2

Δt
+

1
h

N∑
j=1

(
fn+1

j − fn
j

) (
ωn+1

j − ωn
j

)

+
h

2

N∑
j=1

(
fn+1

j − fn
j

)2

[
āj − h

N∑
i=1

b̄ji(fn
i )2

]

+
h2

4

N∑
j=1

(
fn+1

j − fn
j

) (
fn+1

j + fn
j

) N∑
i=1

b̄ji

(
fn+1

i − fn
i

) (
fn+1

i + fn
i

)
=: − 2T1 + T2 + T3 + T4.

Since T1 > 0, we only need to prove T2, T3, T4 ≤ CΔtT1 for suitably small Δt. Note that for pj = fn+1
j − fn

j

we have

T2 =
1
h

N∑
j=1

pj(pj+1 − 2pj + pj−1)

= − 1
h

N−1∑
j=1

(pj+1 − pj)2 ≤ 0.

In virtue of Lemma 3.1, we have

T3 =
h

2
(‖a‖L∞ + ‖b‖L∞‖fn‖2

2)
N∑

j=1

(
fn+1

j − fn
j

)2

≤ c1ΔtT1,

where c1 = 1
2

(‖a‖L∞ + ‖b‖L∞ max{‖f0‖2
2, ‖a‖L∞/bf}

)
.

Using the fact that B is symmetric, we obtain

T4 ≤ h2

4

N∑
j=1

(
fn+1

j − fn
j

)2 (
fn+1

j + fn
j

) N∑
i=1

b̄ji

(
fn+1

i + fn
i

)

≤ 1
4
‖b‖L∞ max

1≤j≤N
h
(|fn+1

j | + |fn
j |

) N∑
i=1

(|fn+1
i |h + |fn

i |h
) N∑

j=1

(
fn+1

j − fn
j

)2

≤ ‖b‖L∞ max
n

‖fn‖2
1

N∑
j=1

(
fn+1

j − fn
j

)2 ≤ c2ΔtT1,

where c2 = 2‖b‖L∞ max{‖f0‖2
2, ‖a‖L∞/bf}/h.

For Δt satisfying (3.6), putting together the above estimates, we have

Fn+1 − Fn ≤− [2 − (c1 + c2)Δt] T1 ≤ −h

N∑
j=1

(fn+1
j − fn

j )2

Δt
,

which is as desired. �

The established energy dissipation inequality (3.7) ensures the following time-asymptotic result.
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Theorem 3.3. For fixed N ≥ 0, assume (2.5) is satisfied and f̃ is the positive steady state. Let the initial data
f0 be positive and F (f0) < 0, and fn be the numerical solution generated from fully-discrete scheme (3.1). If
Δt is small so that (3.6) holds, then

lim
n→∞ fn = f̃ . (3.9)

Proof. Define the set
Σ = {f = (f1, f2, . . . , fN) ∈ RN |f > 0, F (f) < 0}.

Then we have f̃ ∈ Σ and f0 ∈ Σ. Denote
ϕn(f0) = fn,

and ω(f0) be a set of limit points of convergent subsequences of the numerical solution ϕn(f0). The boundedness
of ‖fn‖2, as stated in Lemma 3.1, ensures that there always exists a convergent subsequence of ϕn(f0), hence
ω(f0) is nonempty.

From inequality (3.7), we see that Fn is a decreasing sequence in n, and also bounded from below by

Fn ≥ −1
2
‖a‖L∞‖fn‖2

2 ≥ −1
2
‖a‖L∞ max

{‖f0‖2
2, γ

}
.

Hence the limit of Fn exists when n tends to ∞; that is

lim
n→∞Fn = lim

n→∞F (fn) = F ∗ ≤ F 0 < 0.

For any g ∈ ω(f0), there exists a subsequence {f (nl)} that converges to g, so that

F (g) = lim
l→∞

F (f (nl)) = F ∗ < 0,

therefore g ≥ 0 and g �= 0, because F (0) = 0.
Note that

F ∗ ≤ F (ϕn+nl(f0)) ≤ F (ϕnl(f0))

for any n ∈ N. Let l tend to ∞, by the continuity of F , we obtain

F ∗ ≤ F (ϕ(n)(g)) ≤ F (g) = F ∗,

that is, F (ϕn+1(g)) = F (ϕn(g)) = F ∗ for n = 0, 1, . . . From inequality (3.7) we see that

ϕn+1
j (g) = ϕn

j (g) ≥ 0

for every 1 ≤ j ≤ N and any n ∈ N∪{0}. Since g ≥ 0 and g �= 0, scheme (3.1) leads to ϕn(g) ≥ 0 and ϕn(g) �= 0,
and further ϕn(g) = f̃ for any n ∈ N ∪ {0}. Hence, g = f̃ , that is ω(f0) = {f̃}. The desired limit (3.9) is thus
proved. �

4. Spatially high order scheme

In this section we discuss a way of designing spatially high-order energy dissipative schemes in the context
of discontinuous Galerkin (DG) discretization. We denote by v+ and v− the right and left limits of function v
crossing cell interfaces, and

[v] = v+ − v−, {v} =
v+ + v−

2
·

Define an k-degree discontinuous finite element space

Vh =
{
v ∈ L2(Ω), v|Ij ∈ P k(Ij), j = 1, . . . , N

}
,

where P k(Ij) denotes the set of all polynomials of degree at most k on Ij .
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In one dimensional setting, the DG scheme for (1.1) is to find fh ∈ Vh such that for all v ∈ Vh and j = 1, . . . , N ,∫
Ij

∂tfhvdx = −
∫

Ij

∂xfh∂xvdx +
(
∂̂xfhv + ∂xv(fh − {fh})

)
|∂Ij (4.1)

+
1
2

∫
Ij

vfh(t, x)
(

a(x) −
∫

Ω

b(x, y)f2
h(t, y)dy

)
dx.

Here
v|∂Ij = v(x−

j+1/2) − v(x+
j−1/2),

and ∂̂xfh is the numerical flux taken as

∂̂xfh = β0
[fh]
h

+ {∂xfh}, j = 1, . . .N − 1, (4.2)

where h = Δx for uniform meshes at xj+1/2 (h = (Δxj + Δxj+1)/2 for non-uniform meshes). The terms
evaluated at two ends are zero due to the natural boundary condition. The initial data fh(0, x) ∈ Vh is obtained
by the piecewise L2 projection of f0(x).

Taking v = fh and summing (4.1) over j we obtain

d
dt

Fh = −2
∫

Ω

|∂tfh|2dx,

where

Fh =
1
4

∫ ∫
b(x, y)f2

h(x)f2
h(y)dxdy − 1

2

∫
a(x)f2

h(x)dx + A(fh, fh)

with

A(fh, fh) =
N∑

j=1

∫
Ij

|∂xfh|2dx +
N−1∑
j=1

(∂̂xfh + {∂xfh})[fh]
∣∣∣
j+1/2

is a high order approximation of F . It is known from [24, 25] that A(u, v) is symmetric and there exists γ > 0
such that

A(fh, fh) ≥ γ‖fh‖2
E , ‖fh‖2

E =
N∑

j=1

∫
Ij

|∂xfh|2dx +
N−1∑
j=1

h−1[fh]2
∣∣∣
j+1/2

provided β0 > k2. As for the time variable, we may apply a similar explicit-implicit discretization, coupled
with the more accurate Gauss quadrature in the integral terms in (4.1). The positivity of numerical solutions is
known to be difficult to achieve when using higher order schemes. These issues and further numerical validation
are hence left for future investigation.

5. Numerical implementation and examples

In this section we present several numerical tests to illustrate both accuracy and capability of scheme (3.1).
In order to see the numerical performance at large times, we present an alternative way to compute the

steady state: this is based on the established result that the positive steady state is the same as the solution
to a nonlinear optimization problem. For general nonlinear optimization problem, a variety of algorithms has
been proposed in the literature, including trust-region-reflective algorithm, active-set algorithm, interior-point
algorithm and sequence quadratic programming algorithm(sqp for short) (see [10, 11, 17, 19, 29, 34]). We shall
use the Matlab code fmincon.m to implement the sqp algorithm.
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Table 1. Errors and the convergence orders of the numerical solution on uniform meshes of
N cells.

f0(x) = 0.5(sin(100x) + 2)

N L∞ error order L1 error order
10 0.1583 – 0.2456 –
20 0.0568 1.4787 0.0821 1.5809
40 0.0139 2.0308 0.0138 2.5727
80 0.0034 2.0315 0.0014 3.3012
160 0.0016 1.0874 7.1341e-04 0.9726
320 6.7877e-04 1.2371 3.5278e-04 1.0159
640 2.2410e-04 1.5988 1.7611e-04 1.0023

5.1. One-dimensional tests to scheme (3.1)

We numerically test several selected examples.
Recall that the positivity of b when b(x, y) = K(x− y) is equivalent to the positivity of the Fourier transform

of K (see [20], p. 502). In addition to the Gaussian kernel, we also use K = 1
1+x2 . In fact, a simple calculation

using the Cauchy integral formula in complex plane, one obtains

1√
2π

∫ ∞

−∞

e−ixξ

1 + x2
dx =

√
π

2
e−|ξ|.

Therefore, the b’s used in (5.1) also satisfies the positivity condition as required.

Example 1 (Accuracy and energy test). Following the setting used in [22, 23], we consider

a(x) = 10(x − 1)2(x − 0.1005)2(x + 1)2, b(x, y) =
1

1 + (40(x − y))2
, (5.1)

which when using the 3-point Gaussian quadrature rule gives the needed discrete data, āj and b̄ji. For initial
data given by

f0(x) = 0.5(sin(100x) + 2), (5.2)

the initialization is given by

f0
j =

1
h

∫
Ij

f0(x)dx, j = 1, . . . , N.

This evaluation is carried out by the 3-point Gaussian quadrature rule. Let fn
j denote the numerical solution

in the jth cell of N cells, and f̃n
i the reference solution in the ith cell of mN cells. The L∞ error and the L1

error are defined as

max
1≤j≤N

max
1≤l≤m

| fn
j − f̃n

m(j−1)+l |,
N∑

j=1

m∑
l=1

| fn
j − f̃n

m(j−1)+l |
h

m
,

respectively. In our simulation, the numerical solution of 1280 cells is taken as the reference solution. Let the
final time T = nΔt, the accuracy of numerical scheme (3.1) at T = 1.0 with time step Δt = 0.1 is given in
Table 1, which confirms the first-order accuracy. Here the choice of Δt may be determined according to the
bound in Theorem 3.2. Actually, Δt can be taken slightly larger as long as time-asymptotic convergence is
obtained. Table 2 gives the temporal change of the discrete energy (3.2).
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Table 2. The change of the discrete energy (3.2) with N = 80 and Δt = 0.1.

tn 0 1 3 5 8 10 12
F (fn) 826.6761 –1.5902 –3.7552 –4.5460 –4.6092 –4.6096 –4.6096
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Figure 1. The first row: initial data (5.2) (left); corresponding numerical solutions (right).
The second row: initial data (5.3) (left); corresponding numerical solutions (middle); positive
steady state (right). N = 80 and Δt = 0.1.

Example 2 (Large time behavior and positive steady state). In addition to initial data (5.2), we also test with
another positive initial data of the form

f0(x) =

{
2(cos(2π(x − 0.1)) + 1) + 0.5, |x − 0.1| ≤ 0.03,

0.5, else.
(5.3)

Numerical solutions to scheme (3.1) with coefficients (5.1) are convergent to the positive steady state, which is
shown in Figure 1.

We also consider Gaussian coefficients given by:

a(x) = G(x, σ1), b(x, y) = G(x − y, σ2), (5.4)

where
G(x, σ) =

1√
2πσ

e−
x2
2σ .

For random initial data, we test the time-asymptotic convergence of numerical solutions toward the positive
steady state. The results are given in Figure 2.
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Figure 2. The first row: random initial data (left); numerical solutions for σ1 = 0.01 < σ2 =
0.05 (middle); corresponding steady state (right). The second row: random initial data (left);
numerical solutions for σ1 = 0.05 > σ2 = 0.01 (middle); corresponding steady state (right).
Final time T = 1, 4, 8, 12, N = 80 and Δt = 0.1.

5.2. Numerical tests with small mutation

The previous numerical tests show that numerical solutions are almost uniformly continuous, instead of
concentration. That is because the diffusion, of size O(1), is strong in spreading the density profile. Note
that the diffusion in the model represents certain mutation mechanism, however, mutation is rare in practical
applications. We hence investigate how the amount of diffusion could affect the solution behavior over time.
Consider the following model

∂tf(t, x) = εfxx(t, x) +
1
2
f(t, x)

(
a(x) −

∫
X

b(x, y)f2(t, y)dy

)
, t > 0, x ∈ X = [−1, 1], (5.5)

and the corresponding fully discrete scheme

fn+1
j − fn

j

Δt
= ε

fn+1
j−1 − 2fn+1

j + fn+1
j+1

h2
+

1
2
fn+1

j

(
āj − h

N∑
i=1

b̄ji(fn
i )2

)
, 1 ≤ j ≤ N, (5.6)

with
fn
0 = fn

1 , fn
N+1 = fn

N .

Model (5.5), when the mutation rate ε → 0, formally leads to

∂

∂t
f(t, x) =

1
2
f(t, x)

(
a(x) −

∫
X

b(x, y)f2(t, y)dy

)
, (5.7)
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Figure 3. Initial data (5.2) and (5.3) (left); numerical solutions to scheme (5.6) for ε =
5E − 3, 5E − 4, 5E − 5, 5E − 6 at T = 200 and Δt = 0.9 (middle); with Δt = 0.01, numerical
solutions of model (5.8) at T = 200 and T = 50, respectively, and the ESD generated by a
nonlinear programming solver in [22] (right).

or the direct competition model for u = f2, of the form

∂

∂t
u(t, x) = u(t, x)

(
a(x) −

∫
X

b(x, y)u(t, y)dy

)
, (5.8)

which is numerically investigated in [22].
Rearranging scheme (5.6), we have

− εΔt

h2
fn+1

j−1 +

[
1 +

2εΔt

h2
− Δt

2

(
āj − h

N∑
i=1

b̄ji(fn
i )2

)]
fn+1

j − εΔt

h2
fn+1

j+1 = fn
j . (5.9)

This scheme for Δt < 2
‖a‖L∞ is shown to be positivity preserving. We test numerical solutions to scheme (5.6)

with data (5.1) and (5.4). In the numerical simulation, we compare numerical solutions of scheme (5.6) for a
series of sufficiently small ε with that of the direct competitive model as obtained in [22].

Example 3 (Numerical solutions with data (5.1)). For fixed sufficiently large final time and an appropriate
time step, we display the changes of numerical solutions for two kinds of initial data with a series of decreasing ε
in Figure 3. The results indicate that the numerical solution for smaller ε is getting closer to the corresponding
discrete Evolutionarily Stable Distribution (ESD for short) of model (5.8), in which the ESD is also obtained
using a nonlinear programming solver as obtained in [22].
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Figure 4. Random initial data (left); numerical solutions to scheme (5.6) for ε = 5E− 3, 5E−
4, 5E−5, 5E−6 at T = 350 and Δt = 0.5, and at T = 1000 and Δt = 1.1, respectively (middle);
with Δt = 0.01, numerical solutions of model (5.8) at T = 350 and T = 1000, respectively, and
the ESD generated by a nonlinear programing solver in [22] (right).

Example 4 (Numerical solutions with Gaussian data (5.4)). We test numerical solutions to scheme (5.6) with
random initial data for different ε. It is shown in Fig.4 that the numerical solution will tend to a Dirac mass
concentrating on 0 for σ1 = 0.01 < σ2 = 0.05, but to a Gaussian function for σ1 = 0.01 > σ2 = 0.05, as time
becomes large. In other words, the numerical solutions to scheme (5.6) for smaller ε are getting closer to the
ESD of the direct competition model (5.8).

6. Summary

In this work, we have developed finite volume schemes for solving the competition-mutation model with
a gradient flow structure. The schemes are easy to compute and are shown to preserve both positivity and
the energy dissipation property. We have also established the equivalence between the existence of a unique
discrete positive steady state and the existence of a unique minimizer of the nonlinear optimization problem.
The proposed energy functional is further explored to prove that numerical solutions of both semi-discrete and
fully discrete schemes converge asymptotically toward the positive steady state as time becomes large. Numerical
examples have confirmed both accuracy and entropy dissipation properties of the numerical schemes, and have
shown the efficiency to capture the large time behavior of numerical solutions. Furthermore, numerical solutions
of the model with small mutation are shown to be close to those of the direct competition model.
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