We develop a preconditioner for systems arising from space-time finite element discretizations of parabolic equations. The preconditioner is based on a transformation of the coupled system into block diagonal form and an efficient solution strategy for the arising blocks. The suggested strategy makes use of an inexact factorization of the Schur complement of these blocks, for which uniform bounds on the condition number can be proven. The main computational effort of the preconditioner lies in solving implicit Euler-like problems, which allows for the usage of efficient standard solvers. Numerical experiments are performed to corroborate our theoretical findings.
Accepté le :
DOI : 10.1051/m2an/2016055
Mots clés : Finite element method, time discretization, discontinuous Galerkin, preconditioning
@article{M2AN_2017__51_4_1173_0, author = {Basting, Steffen and B\"ansch, Eberhard}, title = {Preconditioners for the {Discontinuous} {Galerkin} time-stepping method of arbitrary order}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1173--1195}, publisher = {EDP-Sciences}, volume = {51}, number = {4}, year = {2017}, doi = {10.1051/m2an/2016055}, mrnumber = {3702409}, zbl = {1375.65131}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016055/} }
TY - JOUR AU - Basting, Steffen AU - Bänsch, Eberhard TI - Preconditioners for the Discontinuous Galerkin time-stepping method of arbitrary order JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1173 EP - 1195 VL - 51 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016055/ DO - 10.1051/m2an/2016055 LA - en ID - M2AN_2017__51_4_1173_0 ER -
%0 Journal Article %A Basting, Steffen %A Bänsch, Eberhard %T Preconditioners for the Discontinuous Galerkin time-stepping method of arbitrary order %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1173-1195 %V 51 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016055/ %R 10.1051/m2an/2016055 %G en %F M2AN_2017__51_4_1173_0
Basting, Steffen; Bänsch, Eberhard. Preconditioners for the Discontinuous Galerkin time-stepping method of arbitrary order. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1173-1195. doi : 10.1051/m2an/2016055. http://www.numdam.org/articles/10.1051/m2an/2016055/
Variational time discretization methods for optimal control problems governed by diffusion–convection–reaction equations. J. Comput. Appl. Math. 272 (2014) 41–56. | DOI | MR | Zbl
and ,Galerkin and Runge–Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118 (2011) 429–456. | DOI | MR | Zbl
, and ,Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118 (2011) 197–228. | DOI | MR | Zbl
,, and ,Time-discrete higher-order ale formulations: Stability. SIAM J. Num. Anal. 51 (2013) 577–604. | DOI | MR | Zbl
, and ,A. Bonito, I. Kyza and R.H. Nochetto, A dG approach to higher order ale formulations in time. In Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. Springer (2014) 223–258. | MR | Zbl
On the implementation of implicit Runge–Kutta methods. BIT Numer. Math. 16 (1976) 237–240. | DOI | MR | Zbl
,Adaptive finite element methods for parabolic problems i: A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. | DOI | MR | Zbl
and ,A. Ern and J.L. Guermond, Theory and practice of finite elements. Vol. 159. Springer Science & Business Media (2013). | MR | Zbl
L.C. Evans, Partial differential equations. Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2nd edition (2010). | MR | Zbl
On conjugate gradient type methods and polynomial preconditioners for a class of complex non-hermitian matrices. Numer. Math. 57 (1990) 285–312. | DOI | MR | Zbl
,Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Sci. Stat. Comput. 13 (1992) 425–448. | DOI | MR | Zbl
,G.H. Golub and Ch.F. Van Loan, Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 4th edition (2013). | MR | Zbl
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer, second revised edition (1991). | MR | Zbl
R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite volumes for complex applications V. Wiley (2008) 659–692. | MR
Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation. J. Numer. Math. 19 (2011) 41–61. | DOI | MR | Zbl
, and ,Inexact simplified Newton iterations for implicit Runge–Kutta methods. SIAM J. Numer. Anal. 38 (2000) 1369–1388. | DOI | MR | Zbl
,A parallelizable preconditioner for the iterative solution of implicit Runge–Kutta-type methods. J. Comput. Appl. Math. 111 (1999) 63–76. | DOI | MR | Zbl
and ,P. Lesaint and P.A. Raviart,On a Finite Element Method for Solving the Neutron Transport Equation. Univ. Paris VI, Labo. Analyse Numérique (1974). | MR | Zbl
High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33 (1996) 627–665. | DOI | MR | Zbl
,A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math. 104 (2006) 489–514. | DOI | MR | Zbl
and ,Order-optimal preconditioners for implicit Runge–Kutta schemes applied to parabolic pdes. SIAM J. Sci. Comput. 29 (2007) 361–375. | DOI | MR | Zbl
, and ,An algebraic multigrid method with guaranteed convergence rate. SIAM J. Sci. Comput. 34 (2012) A1079–A1109. | DOI | MR | Zbl
and ,An aggregation-based algebraic multigrid method. Electr. Trans. Numer. Anal. 37 (2010) 123–146. | MR | Zbl
,Aggregation-based algebraic multigrid for convection-diffusion equations. SIAM J. Sci. Comput. 34 (2012) A2288–A2316. | DOI | MR | Zbl
,Y. Notay, AGMG software and documentation. See http://homepages.ulb.ac.be/˜ynotay/AGMG/ (2015).
Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems. Numer. Math. 124 (2013) 151–182. | DOI | MR | Zbl
, and ,F. Schieweck and G. Matthies, Higher order variational time discretizations for nonlinear systems of ordinary differential equations. Otto-von-Guericke-Universität Magdeburg. Preprint (2011) 23.
Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38 (2000) 837–875. | DOI | MR | Zbl
and ,hp-discontinuous galerkin time-stepping for parabolic problems. C. R. Acad. Sci. Sér. I. Math. 333 (2001) 1121–1126. | MR | Zbl
and ,Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs. Model. Identif. Control 27 (2006) 109. | DOI | MR
, and ,M. Stoll, One-shot solution of a time-dependent time-periodic PDE-constrained optimization problem. IMA J. Numer. Anal. (2013) drt019. | MR | Zbl
All-at-once solution of time-dependent Stokes control. J. Comput. Phys. 232 (2013) 498–515. | DOI | MR
and ,R. Temam, Navier-Stokes equations. Theory and numerical analysis. Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977). | MR | Zbl
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Number 1054 in Springer Lecture notes in Mathematics. Springer, 2 edition (1984). | MR | Zbl
Sh.W. Walker, Felicity: Finite element implementation and computational interface tool for you. MATLAB/C++, Tech. Report (2013).
Efficient preconditioning of variational time discretization methods for parabolic partial differential equations. ESAIM: M2AN 49 (2015) 331–347. | DOI | Numdam | MR | Zbl
and ,hp-discontinuous Galerkin time stepping for parabolic problems. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6685–6708. | DOI | MR | Zbl
, , and ,Cité par Sources :