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PRECONDITIONERS FOR THE DISCONTINUOUS GALERKIN
TIME-STEPPING METHOD OF ARBITRARY ORDER
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Abstract. We develop a preconditioner for systems arising from space-time finite element discretiza-
tions of parabolic equations. The preconditioner is based on a transformation of the coupled system
into block diagonal form and an efficient solution strategy for the arising 2 × 2 blocks. The suggested
strategy makes use of an inexact factorization of the Schur complement of these blocks, for which
uniform bounds on the condition number can be proven. The main computational effort of the pre-
conditioner lies in solving implicit Euler-like problems, which allows for the usage of efficient standard
solvers. Numerical experiments are performed to corroborate our theoretical findings.
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1. Introduction

Using low order time discretization schemes like backward Euler or Crank−Nicolson is rather standard
practice when solving time dependent partial differential equations (PDE). However, in most cases one can take
great advantage of using higher order discretization schemes. Obvious choices for such discretization schemes
are those frequently used for discretizing ordinary differential equations (ODE) like multistep or Runge−Kutta
methods. These approaches have been studied for instance in [13, 34] and the references therein.

Another approach is to use variational time discretization schemes, more particularly to use continuous or
discontinuous Galerkin schemes in time. Approximations of this type possess many appealing features, let us
just mention three of them:

• Stability: many variational time discretization approaches exhibit favourable stability properties like A-
stability. In particular, for the dG(k) method considered in this paper, even strong A-stability can be shown
to hold for arbitrary polynomial degrees k [18, 27].

• Convergence properties: many variational time discretization schemes exhibit super convergence properties,
for instance dG(k), which is super convergent of order 2k + 1 at the nodal points [34].

• Generality: being of variational type, time discretization is treated similar to space discretization. As a
consequence, many of the techniques developed for space discretization over the years are directly applicable
to time discretization.
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If combined with Galerkin schemes for spatial discretization like finite elements, they also offer a clean way
for a posteriori error control, see for instance [2, 7, 20]. Naturally, coupled space-time systems occur in (time-
dependent) optimal control problems, e.g. [1, 31, 32] to name a few. Moreover variational time discretization
schemes are particularly well suited to discretize problems on time-dependent domains, see [4, 5].

However, Galerkin time discretization is not that popular among practitioners. The reason for the reluctance
to use this type of discretization might be found in the considerably more complicated discrete systems arising
after full discretization. Using a Galerkin time discretization with, say, r ∈ N degrees of freedom per time step
results in a coupled system of r (spatially discretized) PDEs to be solved in each time step. At first glance it is
not obvious how to solve or precondition these systems efficiently.

For the numerical solution of the coupled system arising from variational time discretization schemes, various
techniques were proposed: Schötzau et al. [28, 29, 37] consider the dG(k) methods for time-independent linear
operators and decouple the arising system into linear problems which have the same structure as as an implicit
Euler-like discretization of the system, but are complex valued. In [26] Richter et al. consider a solution strategy
for nonlinear parabolic problems discretized by the dG(k) method based on an inexact factorization of the block
eliminated dG(k) system. This approach turns out to be quite costly for linear problems, however. For the dG(1)
case, Hussain et al. consider an efficient solution approach based on a multigrid preconditioned BiCGStab solver
in [15].

At this point, it seems important to emphasize that variational time discretization schemes share many
similarities with implicit Runge−Kutta methods, see for instance [2] for a unified theoretical treatment of
these methods. Therefore, preconditioners used for the solution of systems arising from implicit Runge−Kutta
methods should be mentioned as well. Preconditioners based on the W-transformation [13] of the Runge−Kutta
coefficient matrix were discussed in [16, 17]. Mardal et al. analyze a block diagonal preconditioner for A-stable
Runge−Kutta schemes in [21] and show order-optimality, i.e. no dependency of the condition number on space-
and time discretization parameters. However, the suggested preconditioner is not order-optimal with respect to
the number of Runge−Kutta stages. In a preceding publication [30], the same authors showed numerically that
this dependency can be weakened by a Gauss−Seidel type preconditioner. We would like to emphasize that in
view of the aforementioned similarities between implicit Runge−Kutta and the variational time discretization
methods considered in this paper, our results carry over to implicit Runge−Kutta methods as well.

In the present paper we propose a strategy to transform the arising systems such that, per time step, only
decoupled real-valued problems of a single (spatially discretized) PDE or a block 2 × 2 system at most have to
be solved. Hereby, the single system or one block of the system is equivalent to an implicit Euler discretization
of the underlying parabolic problem. There is an abundance of efficient solvers like for instance multigrid to
tackle such a problem.

Thus, assuming there is an optimal standard solver for the Euler-discretized problem at hand, it remains
to effectively precondition the 2 × 2 systems. To this end, we propose a strategy based on the ideas in [3]
for preconditioning fourth order (in space) problems. In order to avoid complex arithmetic (which may not be
provided by the underlying finite element code to be used), the main ingredient of our strategy is an inexact
factorization of the Schur complement of the 2 × 2 system. In this sense, the approach can be seen as a
generalization of a similar Schur complement approach for the dG(1) method that was presented in [36] to
arbitrary degree k. For the preconditioned operator, uniform bounds of the condition number with respect to
space and time discretization parameters as well as the degree of the method can be proven.

Let us define the problem under consideration in more detail. Consider the following parabolic equation on
a given time interval I := (0, T ) and a bounded domain Ω ⊂ Rd, d ∈ {2, 3}: Find u : I × Ω → R such that

∂tu(t,x) −∇ · (D(x)∇u(t,x)) = f(t,x) ∀(t,x) ∈ I × Ω

u(t,x) = 0 ∀(t,x) ∈ I × ∂Ω

u(0) = u0 in Ω,

⎫⎪⎬
⎪⎭ (1.1)

where Di,j , i, j = 1, . . . , d are given coefficients and f : I × Ω → R, u0 : Ω → R are given data.
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We will use a weak formulation of equation (1.1) in both space and time. For that purpose, we consider
the space of square integrable functions L2(Ω), the Sobolev space of once weakly differentiable functions V :=
H1

0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}, its dual space V∗ = H−1(Ω).
Furthermore, we define the parabolic function space

X := {v ∈ L2((0, T ), V) : ∂tv ∈ L2((0, T ), V∗)}. (1.2)

The space X is continuously embedded into C0([0, T ], L2(Ω)) and thus, for functions v ∈ X , we also use the
notation v(t) to denote v(t, ·) for t ∈ [0, T ].

Throughout this paper, we make the assumption that Di,j ∈ L∞(Ω), i, j = 1, . . . , d, and that the correspond-
ing coefficient matrix D is symmetric and uniformly positive definite. If the given data fulfills the regularity
assumptions

u0 ∈ L2(Ω), f ∈ L2((0, T ), L2(Ω)),

existence and uniqueness of a weak solution u ∈ X to problem (1.1) can be shown (see e.g. Chap. 7.1, Thms. 3
and 4 in [9], Thm. 1.1 in [33]). In particular, due to the embedding X ↪→ C0([0, T ], L2(Ω)), the initial condition
u(0) = u0 in L2 is well defined.

Let us introduce the bilinear form a : V × V → R which is defined as

a(u, v) :=
∫

Ω

D∇u · ∇v dx. (1.3)

With these notations, a weak formulation to problem (1.1) can be stated as follows: let f ∈ L2((0, T ), L2(Ω))
and u0 ∈ L2(Ω) be given. Find u ∈ X such that

∫ T

0

〈∂tu, v〉dt +
∫ T

0

a(u, v) dt + (u(0), v(0)) =
∫ T

0

(f, v) dt + (u0, v(0)) (1.4)

for all v ∈ X .
Here, (·, ·) denotes the L2-inner product and 〈·, ·〉 is the duality pairing on V.
The rest of this paper is organized as follows. Section 2 deals with the variational time discretization of

equation (1.4) by a discontinuous Galerkin (dG) method and space discretization by conforming finite elements.
For the resulting fully discrete system, an efficient solution strategy is developed in Section 3. We begin by
transforming the coupled system into a system of block diagonal form consisting of single blocks of implicit Euler-
like problems, and coupled 2×2 blocks whose efficient treatment is crucial for the overall efficiency of the method.
In order to circumvent complex arithmetic, we make use of a preconditioned Schur complement formulation.
The occurring ill-conditioned fourth order operator is preconditioned by means of an inexact factorization for
which uniform bounds on the condition number can be derived. We touch on numerical realization of the
preconditioner and our implementation in Section 4 and conclude with numerical experiments in Section 5.

2. Variational time discretization for parabolic partial differential

equations

In order to discretize equation (1.4) in time, the time interval I = (0, T ) is subdivided into N subintervals
In = (tn−1, tn], where 0 = t0 < t1 < · · · < tN = T . The time step size is denoted by τn := tn − tn−1.

The general idea of variational time discretization is to approximate the function u : I → V by a piecewise
polynomial function uτ where uτ |In

∈ Pk(In, V). To this end, define the space

P
dc
k := {v ∈ L2((0, T ), V) : v|In

∈ Pk(In, V) ∀n = 1, . . . , N}, (2.1)
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where

Pk(In, V) := {v : In → V : v(t) =
k∑

j=0

wjt
j ∀ t ∈ In, wj ∈ V ∀ j = 0, . . . , k}

denotes the space of V-valued polynomials of order k in time. For functions v ∈ Pdc
k , we define the jump at tn

as follows:
v−n := lim

t↗tn

v(t), v+
n := lim

t↘tn

v(t), [v]n := v+
n − v−n ,

where v−0 is to be understood as v(0) := v0 ∈ L2(Ω), i.e. given initial data.

2.1. Discontinuous Galerkin methods

The discontinuous Galerkin method of order k ≥ 0 (denoted by dG(k)) to approximate problem (1.4)
reads [34]:

For given u0 ∈ L2(Ω) and f ∈ L2((0, T ), L2(Ω)), find uτ ∈ Pdc
k , such that with u−

τ0
:= u0 it holds

∫
In

[
(∂tuτ , v) + a(uτ , v)

]
dt + ([uτ ]n−1, v

+
n−1) =

∫
In

(f, v) dt ∀ v ∈ P
dc
k , 1 ≤ n ≤ N (2.2)

This method is known to be strongly A-stable (L-stable) (Chap. 4.1.3, Lem. 3 + 5 in [27]). While the method
is convergent of order k + 1 when measured in ‖ · ‖L2((0,T ),V), it is super convergent of order 2k + 1 when only
considering the solution at the nodal values uτ (tn) (Thm. 12.3, p. 211 in [34]).

Notice that on each time interval In, uτ |In may be written as

uτ (t) =
k+1∑
j=1

uj
nϕn,j(t) ∀ t ∈ In, (2.3)

when {ϕn,j ∈ Pk(In, R), j = 1, . . . , k + 1} denotes a set of basis vectors for the space Pk(In, V) and uj
n ∈ V.

Correspondingly, any test function vj ∈ P
dc
k can be decomposed on the time interval In as a sum of terms of

the form:
v(x)ϕ(t), (2.4)

where v ∈ V is constant in time and ϕ ∈ Pk(In, R).
In order to derive a practical method, a basis of Pk(In, V) has to be specified and the time integrals in

equation (2.2) need to be replaced by numerical quadrature. To this end, let

ωn,q ∈ R, tn,q ∈ In, q = 1, . . . , NQ (2.5)

denote quadrature weights and quadrature points, respectively, such that the resulting quadrature operator

Qn : C0(Īn) → R,

Qn[p] :=
NQ∑
q=1

ωn,qp(tn,q)
(2.6)

is exact for p ∈ P2k(In, R). In particular, the terms (∂tuτ , v) and (uτ , v) are integrated exactly if such a
quadrature formula is used.
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Replacing the integrals in equation (2.2) by numerical quadrature and using a (yet to be specified) basis
{ϕn,j , j = 1, . . . , k+1} of Pk(In, V) leads to the following time-discrete formulation of our problem on each time
interval In:

Let n ∈ {1, . . .N}. For given uτ |In−1 from the previous time step (or initial data if n = 1), find k + 1
coefficients u1

n, . . . , uk+1
n ∈ V such that the following equations hold for all v ∈ V:

k+1∑
j=1

γi,j(uj
n, v) + αi,ja(uj

n, v) =

(u−
n−1, v)ϕn,i(tn−1) + Qn[〈f(t), v〉ϕn,i(t)] for 1 ≤ i ≤ k + 1,

where γi,j := Qn[ϕ′
n,j(t)ϕn,i(t)] + ϕn,j(tn−1)ϕn,i(tn−1) and αi,j := Qn[ϕn,j(t)ϕn,i(t)].

(2.7)

Remarks:

• At this point, it is important to note that by definition the coefficients γi,j and αi,j are computed exactly,
due to the assumption that Qn is exact for p ∈ P2k(In, R).

• Transformation to a fixed reference interval Î = (0, 1) and using standard properties of basis functions and
their corresponding reference basis functions {ϕ̂i} on Î yields

γi,j = Qn[ϕ′
n,j(t)ϕn,i(t)] + ϕn,j(tn−1)ϕn,i(tn−1) =

∫
In

ϕ′
n,j(t)ϕn,i(t) dt + ϕn,j(tn−1)ϕn,i(tn−1)

=
∫ 1

0

ϕ̂′
j(t̂)ϕ̂i(t̂) dt̂ + ϕ̂j(0)ϕ̂i(0) =: γ̂i,j , and

αi,j = Qn[ϕn,j(t)ϕn,i(t)] =
∫

In

ϕj(t)ϕi(t) dt = τn

∫ 1

0

ϕ̂j(t̂)ϕ̂i(t̂) dt̂ =: τnα̂i,j

(2.8)

for coefficients γ̂i,j and α̂i,j which depend on the particular choice of basis functions, but not on τn.
• Up to now, a basis for the space Pk(In, V) has not been specified yet, the reason being that by construction our

preconditioner will be insensitive to the particular choice of basis functions (see the remarks for Lem. 3.2).
Following [27], in this paper we choose Qn to be the (k + 1)-point right-sided Gauß–Radau formula on
In = (tn−1, tn], which is exact for p ∈ P2k. With this choice, one of the quadrature points is given by tn
(denoting tn,k+1 := tn for the sake of simplicity). Correspondingly, we select k + 1 Lagrange basis functions
ϕn,j fulfilling

ϕn,j(tn,i) = δij , 1 ≤ i, j ≤ k + 1 (2.9)

at the time quadrature nodes tn,i ∈ In, i = 1, . . . , k + 1. Since tn = tn,k+1, this leads to the property that
uτ (tn) = uk+1

n .

2.2. Space discretization and fully discrete problem

In order to derive a fully discrete scheme let us denote by Vh ⊂ V a conforming finite element space. On Vh,
we introduce the operator Ah : Vh → Vh and the identity operator Ih : Vh → Vh by:

(Ahuh, vh) = a(uh, vh) ∀uh, vh ∈ Vh, (2.10)
(Ihuh, vh) = (uh, vh) ∀uh, vh ∈ Vh. (2.11)

On each time interval In, we can now define our fully discrete problem based on equation (2.7) as a matrix
valued problem on Vh. To this end we introduce the operator-valued system matrices

Gh :=

⎛
⎜⎝

γ1,1Ih . . . γ1,k+1Ih

...
. . .

...
γk+1,1Ih . . . γk+1,k+1Ih

⎞
⎟⎠ , Bh :=

⎛
⎜⎝

α1,1Ah . . . α1,k+1Ah

...
. . .

...
αk+1,1Ah . . . αk+1,k+1Ah

⎞
⎟⎠ (2.12)
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and the right-hand side vector

fh :=

⎛
⎜⎝

(u−
n−1, v)ϕn,1(tn−1) + Qn[〈f(t), v〉ϕn,1(t)]

...
(u−

n−1, v)ϕn,k+1(tn−1) + Qn[〈f(t), v〉ϕn,k+1(t)]

⎞
⎟⎠ . (2.13)

The fully discrete solution uh =
(
u1

h, . . . , uk+1
h

)T ∈ (Vh)k+1 on In can now be computed from solving the
following problem:

Let uτ |In−1 be given from the previous time step or initial data, find uh ∈ (Vh)k+1 such that

(Gh + Bh)uh = fh. (2.14)

3. An efficient solution strategy for the coupled system

This section is concerned with the main objective of this paper, namely with deriving an efficient solution
strategy for the coupled problem (2.14).

3.1. Transformation to block diagonal form

In what follows, let the following tensor product notation hold for C ∈ Rr×r, r ∈ N and an operator L on Vh:

C ⊗ L :=

⎛
⎜⎝

C1,1L . . . C1,rL
...

. . .
...

Cr,1L . . . Cr,rL

⎞
⎟⎠ . (3.1)

Using this notation, problem (2.14) can be recast in the form

(g⊗ Ih + τnb ⊗ Ah)uh = fh, (3.2)

where the coefficient matrices g,b ∈ R(k+1)×(k+1) are defined as gi,j := γ̂i,j and bi,j := 1
τn

αi,j = α̂i,j , with
α̂, γ̂ as in equation (2.8). Note that by definition b and g do not depend on τn, but only on the choice of the
basis.

Since b is a mass matrix built from linearly independent functions, it is invertible. Then multiplying equa-
tion (3.2) by b−1 yields (

b−1g⊗ Ih + τn1⊗ Ah

)
uh = b−1fh, (3.3)

where 1 denotes the r × r identity matrix. One key idea, well-known in the Runge−Kutta community (see for
instance [13], Chap. IV.8) due to the pioneering work by Butcher [6], is to transform the matrix b−1g into a
matrix of simple form, such as diagonal or block diagonal. To this end, for the rest of this paper we make the
following assumption:

Assumption 3.1. Assume that the matrix b−1g is diagonalizable (over C).

Remarks:

• The authors failed to prove that Assumption 3.1 is fulfilled for all k ∈ N. However, computational tests
clearly showed that the assumption is fulfilled for all k ≤ 50, which is far beyond practical needs. A similar
result was reported in [28], see remarks on Method (ii), Section 6.3, and the question of diagonalizability of
the matrix b−1g seems to remain open.

• Note that Assumption 3.1 is not really needed. Our strategy outlined below would also apply to the general
situation. In this case one would have to replace transformation equation (3.10) by a real Schur transfor-
mation, i.e. a transformation into a block upper triangular form, see [12, 28], Method (i) in Section 6.3 for
more details. Of course it is more convenient and more effective to work with a block diagonal structure.
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For convenience the eigenvalues λ1, . . . , λr , λr+1, . . . , λk+1 of b−1g may be ordered such that the first r eigenval-
ues λ1, . . . , λr are real, while the remaining k− r +1 eigenvalues are complex. Since these eigenvalues appear as
complex conjugates, for the sake of notation we let {λr+1, . . . , λk+1} =

{
λr+1, λr+1, . . . , λn, λn

}
for n = k−r+1

2 ,
where (λi) > 0 and (λi) < 0 for r + 1 ≤ i ≤ n.

Denoting the matrix holding the (possibly complex valued) eigenvectors of b−1g which correspond to the
eigenvalues

{
λ1, . . . , λr, λr+1, λr+1, . . . , λn, λn

}
by Ṽ :=

[
x1 . . . xr xr+1 xr+1 . . . xn xn

]
∈ C(k+1)×(k+1) and

letting D̃ := diag(λ1, . . . , λr, λr+1, λr+1, . . . , λn, λn) ∈ C(k+1)×(k+1) Assumption 3.1 yields(
b−1g

)
Ṽ = ṼD̃. (3.4)

Remark: At this point, it should be emphasized that if one is willing to use complex arithmetic, the above
transformation applied to equation (3.3) would directly lead to solving the block diagonal but complex-valued
system (

D̃⊗ Ih + τn1⊗ Ah

)
ũh = Ṽ

−1
b−1fh, (3.5)

where ũh = Ṽ
−1

uh. The special structure of the decoupled problems in the system above then allows for an
efficient treatment in terms of iterative solvers, see for instance [10, 11]. As stated in the introduction, one of
our design principles was to avoid complex arithmetic and we therefore make use of a real-valued block diagonal
transformation. To this end let us define the block diagonal matrix

T̃ :=

⎛
⎜⎜⎜⎝

1
R̃

. . .
R̃

⎞
⎟⎟⎟⎠ ∈ C

(k+1)×(k+1) where R̃ :=
1
2

(
1 −i
1 i

)
. (3.6)

Using this matrix one easily checks that

T̃
−1

D̃T̃ =

⎛
⎜⎝

Λ1

. . .
Λn

⎞
⎟⎠ ∈ R

(k+1)×(k+1) (3.7)

is block diagonal and real valued with Λi = λi for i ≤ r and the 2 × 2 blocks

Λi =
(

αi βi

−βi αi

)
, (3.8)

where αi = �(λi) and βi = (λi) for r + 1 ≤ i ≤ n. Furthermore, we get that

ṼT̃ =
[
x1 . . . xr �(xr+1) (xr+1) . . . �(xn) (xn)

]
∈ R

(k+1)×(k+1). (3.9)

As a result, we have constructed a real valued transformation matrix V := ṼT̃ ∈ R(k+1)×(k+1) such that

V−1
(
b−1g

)
V =

⎛
⎜⎝

Λ1

. . .
Λn

⎞
⎟⎠ . (3.10)

Introducing the transformed solution variable wh = V−1uh and multiplying (3.3) by V−1, leads to the
equivalent formulation

Shwh = V−1b−1fh, (3.11)
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Table 1. Eigenvalues of the matrix b−1g for the dG(k) methods, k = 1, . . . , 4.

dG(1) dG(2) dG(3) dG(4)
2.0000 + 1.4142i,
2.0000 − 1.4142i

2.6811 + 3.0504i,
2.6811 − 3.0504i,
3.6378

3.2128 + 4.7731i,
3.2128 − 4.7731i,
4.7872 + 1.5675i,
4.7872 − 1.5675i

3.6557 + 6.5437i,
3.6557 − 6.5437i,
5.7010 + 3.2103i,
5.7010 − 3.2103i,
6.2867

where

Sh =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1Ih + τnAh

. . .
λrIh + τnAh

αr+1Ih + τnAh βr+1Ih

−βr+1Ih αr+1Ih + τnAh

. . .
αnIh + τnAh βnIh

−βnIh αnIh + τnAh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.12)

We are thus led to the problem of solving a block diagonal system Sh which reduces to solving r standard 1× 1
implicit Euler-like problems, and coupled 2 × 2 block systems of the form(

αIh + τnAh βIh

−βIh αIh + τnAh

)(
w1

w2

)
=
(

f1

f2

)
, (3.13)

whose efficient solution will be subject of the next subsection. Note that due to the block diagonal structure,
the solution of the sub-problems (3.13) can be done in parallel.

Remark: Table 1 shows the eigenvalues of the matrix b−1g for the dG(k) methods with k = 1, . . . , 4. Notice
that all eigenvalues listed in Table 1 have positive real part, and it will turn out that the sign of the real part α
of the eigenvalues is a crucial point in our considerations. We thus provide the following lemma.

Lemma 3.2. Let λ be an eigenvalue of the matrix b−1g. Then it holds

�(λ) ≥ 0.

Proof. By definition of b and g, λ is an eigenvalue iff there exists v ∈ Pk([0, 1], C) with
∫ 1

0
|v(t̂)|2dt̂ = 1 and∫ 1

0

v′(t̂)w̄(t̂)dt̂ + (vw̄)(0) = λ

∫ 1

0

v(t̂)w̄(t̂)dt̂

for all w ∈ Pk([0, 1], C). Here, w̄ denotes the complex conjugate of w. Integrating by parts yields∫ 1

0

v′(t̂)w̄(t̂)dt̂ + (vw̄)(0) = −
∫ 1

0

v(t̂)w̄′(t̂)dt̂ + (vw̄)(1).

Adding the left-hand side and the complex conjugate of the right-hand side gives∫ 1

0

v′(t̂)w̄(t̂) − v̄(t̂)w′(t̂)dt̂ +
[
(vw̄)(0) + (v̄w)(1)

]
= λ

∫ 1

0

v(t̂)w̄(t̂)dt̂ + λ̄

∫ 1

0

v̄(t̂)w(t̂)dt̂.

Setting w := v yields
0 ≤ |v(0)|2 + |v(1)|2 = 2�(λ). �

As already mentioned earlier, the proof of the above lemma also showed that the eigenvalues of b−1g are
independent of the specific choice of the basis for Pk(In, V).
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3.2. Solving the 2 × 2 block system by a preconditioned Schur complement formulation

The solution of the 2× 2 block system (3.13) can be achieved in numerous ways. In this paper, we will make
use of a Schur complement formulation: by block elimination, first w2 is obtained by solving

Shw2 = βf1 + (αIh + τnAh)f2, where Sh = (αIh + τnAh)2 + β2Ih, (3.14)

and then w1 is determined from

Ihw1 =
1
β

[(αIh + τnAh) − f2] . (3.15)

Clearly, the performance of the entire process will depend on how efficiently the Schur complement equa-
tion (3.14) can be solved, and some remarks seem to be in order.

Remarks:

• The Schur complement operator Sh is a (discretized) fourth order differential operator, which means that
the conditioning of problem (3.14) will be, in general, much worse than that of problem (3.13). To be
more precise, for uniformly elliptic second order operators Ah and H1 conforming Lagrange finite elements
the condition number of Ah in the worst case (i.e. for fixed time step size τ but variable mesh size h) is
bounded by

κ(Ah) ≤ Ch−2 and hence κ(Sh) ≤ Ch−4,

see for instance Theorem 9.11 in [8].
• Due to the previous remark, an efficient solution strategy for the Schur complement formulation (3.14) using

iterative solvers will only be possible with a suitable preconditioner that will be constructed in this section.
• If Ah is symmetric positive definite, then also the Schur complement operator Sh is symmetric positive

definite, and solvers exploiting this fact can be used (for instance, CG). It is worth pointing out that the
block system (3.13) does not possess this property since it has saddle point structure.

The preconditioner for (3.14) is based on ideas developed for a class of fourth order problems presented and
analyzed in [3]. The main ingredient is an inexact factorization of the Schur complement operator Sh, for which
uniform bounds can be proved. A corresponding preconditioner for the special case of dG(1) and cGP(2) time
discretizations was already presented in [36]. Note that an exact factorization for Sh is also possible, but leads
to complex-valued equations, as pointed out in [26].

The preconditioner will be derived from and analyzed under the assumption that Ah is symmetric, positive
definite. We will later demonstrate with a numerical example that the proposed preconditioner also works for
more general operators. Consider the symmetric left-right preconditioned operator

Ph(μ) := (μIh + τnAh)−1Sh(μIh + τnAh)−1, (3.16)

where μ > 0 denotes a yet to be specified parameter. Note that the spectrum of μIh + τnAh is given by

σ(μIh + τnAh) = {μ + ξ : 0 ≤ ξ ∈ σ(τnAh)} ⊂ (μ,∞). (3.17)

Therefore, for fixed ξ ∈ σ(τnAh), the corresponding eigenvalue ξ̃μ(ξ) of the preconditioned operator Ph(μ)
reads:

ξ̃μ(ξ) =
(α + ξ)2 + β2

(μ + ξ)2
· (3.18)

In order to highlight the role of the parameter μ let us first assume that α is strictly positive and μ = α > 0.
Then

ξ̃α(ξ) = 1 +
β2

(α + ξ)2
(3.19)
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and since ξ̃ is monotonically decreasing in ξ, we have

sup
ξ∈σ(τnAh)

ξ̃α(ξ) ≤ ξ̃α(0) = 1 +
β2

α2
, (3.20)

inf
ξ∈σ(τnAh)

ξ̃α(ξ) ≥ lim
ξ→∞

ξ̃α(ξ) = 1 (3.21)

and consequently σ(Ph(α)) ⊂ (1, 1 + β2

α2 ). Hence, the condition number of the preconditioned operator Ph(α) is
bounded by

κ(Ph(α)) ≤ 1 +
β2

α2
if μ = α > 0. (3.22)

For the special case that α = 0 (which cannot be excluded a priori by the result of Lem. 3.2), choosing the
parameter μ = β in (3.18) leads to

ξ̃β(ξ) =
ξ2 + β2

(β + ξ)2
with

1
2
≤ ξ̃β(ξ) ≤ 1 and therefore κ(Ph(β)) ≤ 2. (3.23)

Note that both of the above bounds for the condition numbers are already insensitive to spatial discretization
(e.g. mesh size) and time step size parameters. However, α and β still depend on the temporal basis. Experimental
results show (see Fig. 1) that for increasing polynomial degree k, the ratio β2

α2 in (3.22) increases as well.
Consequently, we aim at finding a parameter μ which resolves this dependency and leads to uniform bounds.

Recalling that λ = α+iβ, observe that the Schur complement operator Sh admits the following decomposition,

Sh = (αIh + τnAh)2 + β2Ih = (τnAh + λIh)(τnAh + λ̄Ih).

A suitable candidate the for the real parameter μ in (3.16) is thus given by μ = |λ| =
√

α2 + β2. In the
following Proposition, we show that indeed the optimal parameter μopt is specified by the above relation, and
prove uniform bounds for the resulting left-right preconditioned operator.

Proposition 3.3. Let Ah be symmetric and positive definite. For α ≥ 0, β ∈ R given, let the parameter μopt :=√
α2 + β2. Then the preconditioned operator Ph(μopt) has condition number

κ(Ph(μopt)) ≤ 2 − 2
α

β2

(√
α2 + β2 − α

)
≤ 2. (3.24)

Remark: For the dG(1) method, in its corresponding 2 × 2 system (3.13) we have that α = 2 and β =
√

2,
see Table 1. Proposition 3.3 then implies that the condition number of the preconditioned Schur complement
operator is bounded by

κ(Ph(μopt)) ≤ 6 − 2
√

6 ≈ 1.101.

Proof. In the proof we assume that α > 0 because we have already derived that the parameter μ = β leads
exactly to the uniform bounds specified in (3.24) for the case α = 0. We first note that

d
dξ

ξ̃μ(ξ) =
2

(μ + ξ)3
[
(α + ξ)(μ − α) − β2

]
, (3.25)

which means that ξ̃μ is monotonically decreasing in ξ if μ ≤ α. Therefore, in this case, κ(Ph(μ)) ≤ ξ̃μ(0)

limξ→∞ ξ̃μ(ξ)
≤

ξ̃μ(0)
1 = α2+β2

μ2 , which is minimal if μ = α and would result in the non optimal bound (3.22).
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For μ ≥ α we are interested in extremal points of ξ̃μ(ξ). It is easy to check that

d
dξ

ξ̃μ(ξ∗) = 0 ⇔ ξ∗ =
β2

μ − α
− α, and (3.26)

ξ∗ ≥ 0 ⇔ μ ≤ α +
β2

α
, (3.27)

and, since Ah was assumed to be positive definite, we need to check the behavior of ξ̃μ(ξ) for α ≤ μ ≤ α + β2

α .
In this case, we have

ξ̃μ(0) =
α2 + β2

μ2
, lim

ξ→∞
ξ̃μ(ξ) = 1 and ξ̃μ(ξ∗) =

β2

β2 + (μ − α)2
≤ 1. (3.28)

Direct computation shows that ξ̃μ(0) ≥ ξ̃μ(ξ∗) and therefore the condition number of Ph(μ) can be estimated
by

κ(Ph(μ)) ≤ max(1, ξ̃μ(0))
ξ̃μ(ξ∗)

· (3.29)

We need to distinguish between two cases: ξ̃μ(0) ≤ 1 and ξ̃μ(0) > 1. The first case requires μ2 ≥ α2 + β2 and
yields

κ(Ph(μ)) ≤ 1
ξ̃μ(ξ∗)

= 1 +
(μ − α)2

β2
· (3.30)

For the second case,

κ(Ph(μ)) ≤ ξ̃μ(0)
ξ̃μ(ξ∗)

=
α2 + β2

β2

β2 + (μ − α)2

μ2
, (3.31)

which is monotonically decreasing in μ for μ2 < α2 + β2. Both cases (3.30) and (3.31) yield that κ(Ph(μ)) is
minimized when

μ = μopt :=
√

α2 + β2, (3.32)

which finally gives

κ(Ph(μopt)) ≤ 1 +
(μopt − α)2

β2
= 2 − 2

α

β2

(√
α2 + β2 − α

)
(3.33)

and proves Proposition 3.3. The remaining case μ ≥ α + β2

α leads to non optimal bounds, since from (3.25) one
concludes that ξ̃μ is monotonically increasing in ξ, and therefore

κ(Ph(μ)) ≤ limξ→∞ ξ̃μ(ξ)
ξ̃μ(0)

=
μ2

α2 + β2
,

while μ2

α2+β2 ≥ 1 + β2

α2 . �

For the sake of brevity, we will always write μopt to refer to the optimal value μopt =
√

α2 + β2 for each
block in (3.11), and will not distinguish between μopt for different blocks, time discretization methods or
temporal polynomial degrees k.
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Bound for κ(Ph(α)) from eq. (3.22)

Bound for κ(Ph(μopt)) from eq. (3.24)

Figure 1. Condition numbers of the preconditioned operators Ph(α) and Ph(μ) for increasing
polynomial degree k together with their theoretical bounds given in (3.22), (3.24).

This subsection is finished by a numerical experiment, indicating that the bounds (3.22) and (3.24) are
sharp in the sense that κ(Ph(μ)) is unbounded in the polynomial degree k for μ = α but remains bounded
for μ = μopt. To this end, consider dG(k) and compute the eigenvalues λi of the corresponding coefficient
matrix b−1g. The maximum condition numbers of the preconditioned Schur complement operators Ph(α) and
Ph(μopt) corresponding to each block are evaluated both from a priori estimates (3.22), (3.24), and from a fully
discretized 1d numerical example (i.e., a realistic discrete operator τnAh corresponding to certain mesh size
and time step size parameters, see Sect. 5.3.1 for details). The latter is done by using the MATLAB function
cond(). Results are depicted in Figure 1. Clearly, increasing the temporal polynomial degree k leads to an
increase of the condition number of Ph(α), while it stays bounded for Ph(μopt) indicating the optimality of the
preconditioner with respect to all parameters.

4. Numerical realization

In this section we elaborate on the choice of a practical finite element space and comment on our implemen-
tation.

4.1. Choice of finite element spaces

Note that except for conformity (Vh ⊂ V) so far no special restriction on the finite element space was assumed.
This makes our preconditioner suitable for a broad class of finite element discretizations.

In our numerical realization, a standard polynomial ansatz on simplicial elements is chosen. To this end, let
Th be a conforming triangulation of Ω, and define the space of continuous, piecewise polynomial functions on Ω:

Vh = Vh,m := {vh ∈ C0(Ω) : vh|T ∈ Pm(T, R) ∀T ∈ Th}. (4.1)

For a basis ϕi, i = 1, . . . , ndof of Vh, define the mass matrix, stiffness matrix, and right-hand sides by

Mij = (ϕj , ϕi) i, j = 1, . . . , ndof (4.2)

Aij = a(ϕj , ϕi) i, j = 1, . . . , ndof (4.3)
f1i = (f1, ϕi) i = 1, . . . , ndof (4.4)
f2i = (f2, ϕi) i = 1, . . . , ndof , (4.5)
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respectively, where f1 and f2 correspond to the right-hand side terms from the block system (3.13). Furthermore,
for a parameter θ > 0, define the matrix

Aθ = θM + τnA. (4.6)

With the above defined matrices M,A,Aθ and vectors f,g it holds:

(Ihuh, ϕl) = (uh, ϕl) = (Mu)l, (4.7)
(Ahuh, ϕl) = a(uh, ϕl) = (Au)l, (4.8)

((θIh + τnAh)uh, ϕl) = θ(uh, ϕl) + τna(uh, ϕl) = (Aθu)l, (4.9)
(f1, ϕl) = f1l, (4.10)

(f2, ϕl) = f2l (4.11)

for l = 1, . . . , ndof , where u ∈ R
ndof ,u = (ui)i=1,...,ndof is the coefficient vector of uh ∈ Vh.

To derive the system of equations that corresponds to the operator equation (3.14) in Vh we explain at first
the isomorphism rm : L(Vh, Vh) → RN×N , N = ndof , that assigns to a linear operator Ah : Vh → Vh its matrix
representation rm(Ah) ∈ RN×N in the following way (see [3]): Let rv : Vh → RN denote the finite element
isomorphism that assigns to a function uh ∈ Vh its nodal vector representation u = rv(uh) ∈ RN . Then, the
matrix representation rm(Ah) ∈ R

N×N is defined by the property

rv(Ahuh) = rm(Ah)rv(uh) ∀uh ∈ Vh.

If we define as above the matrix M ∈ RN×N and the matrix A ∈ RN×N assigned to Ah by means of
Akj := (Ahϕj , ϕk) for all k, j = 1, . . . , N , we can show that rm(Ah) = M−1A. For two operators A1h, A2h with
corresponding matrices A1,A2 we get rm(A1hA2h) = M−1A1M−1A2. Now, using the fact that rv(f2) = M−1f2
and the analog for rv(f1), we get that the operator equation (3.14) for uh ∈ Vh is equivalent to the following
matrix-vector equation for the nodal vector w2 = rv(w2) ∈ RN :(

M−1AαM−1Aα + β2I
)
w2 = βM−1f1 + M−1AαM−1f2 (4.12)

or, by multiplying by M to save unnecessary inversions of M,(
AαM−1Aα + β2M

)
w2 = βf1 + AαM−1f2 (4.13)

Correspondingly, the left and right sided preconditioner components have the matrix representation

Aμopt = μoptM + τnA. (4.14)

Note that an operator Ah has the same eigenvalues as its matrix representation rm(Ah) such that the results
of Section 3 on the preconditioning can be applied to the iterative solution of the corresponding matrix-vector
equation (4.13) directly.

In the case of a symmetric operator Ah, the solution of equation (4.13) can be done using the preconditioned
Conjugate Gradient method (PCG). A pseudocode variant containing the operators from our setting is shown
in Algorithm 1.

Once the essential unknown w2 was computed with Algorithm 1, the second unknown w1 can be obtained,
in view of (3.15), from

Mw1 =
1
β

[Aαw2 − f2] . (4.15)

Remark: The main numerical effort of Algorithm 1 lies in the application of the preconditioner A−1
opt =

(μoptM+ τnA)−1. This evaluation corresponds to solving one step of the implicit Euler method with time step
size τn

μopt
. This problem is very well studied and can be solved efficiently with many methods, e.g. multigrid

methods, Krylov subspace methods etc. Additionally, one inversion of the mass matrix M is necessary per
application of the preconditioner, a problem that can be tackled efficiently by the aforementioned methods.
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Algorithm 1. PCG for the Schur complement equation (4.13).
Require: Parameters α, β, right-hand side vectors f,g and initial guess x0

ωopt ←
√

α2 + β2 � Compute optimal parameter for preconditioner
x← x0 � Initial guess
S← AαM−1Aα + β2M � Define Schur complement operator
Aopt ← ωoptM + τnA � Define preconditioner
b← (

βf1 + AαM−1f2
)

� Compute right-hand side
r0 ← r← Sx− b � Compute initial residual
h← A−1

optMA−1
optr0 � Compute preconditioned residual

d← h
loop

β ← 1
〈r,h〉

z← Sd � Apply operator
α← 〈r,h〉

〈d,z〉
x← x + αd � Update solution
r← r− αz � Update residual
return if ‖r‖/‖r0‖ < tol
h← A−1

optMA−1
optr � Compute preconditioned residual

β ← β〈r,h〉
d← h + βd � Update search direction

end loop
return x � w2 ← x, solution to (4.13)

4.2. Implementation

The implementation was done using the MATLAB based finite element toolbox FELICITY [35]. FELICITY
offers linear and quadratic finite elements on unstructured simplicial grids in 1, 2 and 3 space dimensions. To
allow for fair comparisons and having full control over termination criteria of the linear solvers, we did not use
the MATLAB built-in iterative solvers pcg and bicg to realize Algorithm 1, but relied on handcrafted versions
instead.

The eigenvalues of the matrix b−1g and the transformation matrix V were directly obtained from MATLAB
(only once at the beginning of each computation) and each Schur complement problem (3.14) was solved using
Algorithm 1.

As termination criterion for Algorithm 1, we prescribed a relative tolerance tol = 1e−10. For the application
of the preconditioner, as mentioned above, the main numerical effort lies in evaluating A−1

opt. An exact evaluation
may turn out to be too costly in practical applications, and cheaper approximations should be considered. In
our implementation, we allow for the following strategies to (approximatively) evaluate A−1

opt:

• An “exact” evaluation of A−1
opt based on the MATLAB operator \.

• An approximation to A−1
opt based on applying the algebraic multigrid solver AGMG [22–25] with different

stopping tolerances. AGMG has shown excellent performance when applied to large scale discretizations of
convection-diffusion equations.

For the inversion of the (well-conditioned) mass matrix which is needed in (4.15) and in each application of the
Schur complement operator in Algorithm 1, we use plain CG which typically requires only a couple of iterations
to converge.

5. Numerical results

In this section we demonstrate the efficiency and stability of our preconditioner on a number of test problems
which are introduced in the following. All experiments were performed on a workstation with an Intel Xeon
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E5-1620 v2 CPU (3.70GHz) and 16GB of memory. CPU timings were obtained using only a single computational
thread to reduce non-deterministic effects due to MATLAB’s built-in multithreading.

5.1. Test problems

As a first test problem, we consider the heat equation in Rd: Let Ω = (0, 1)d ⊂ Rd and I = (0, 1). Then the
problem reads

Problem 1 (P1). Find u such that

∂tu − Δu = f in I × Ω,

u = 0 on I × ∂Ω,
(5.1)

where the right hand side f is constructed in such a way that the exact solution is given by

u(t,x) = sin(10πt)φ(x) where φ(x) =
d∏

j=1

xj(1 − xj). (5.2)

Our second problem addresses the performance of the preconditioner when applied to anisotropic diffusion
problems in 2d. We consider the 2d unit disk Ω = B1(0) ⊂ R2, a time interval I = (0, 1) and pose the following
problem:

Problem 2 (P2). Given a parameter η > 0, find u such that

∂tu −∇ · (Dη∇u) = 0 in I × Ω,

u = 0 on I × ∂Ω,

u(0, ·) = u0 on Ω,

(5.3)

where

Dη(x) = Rθ

(
1 0
0 η

)
R−1

θ for Rθ =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
,

θ = 40◦ and the initial condition is given by u0(x, y) = 1 − x2 − y2.

Remark: Varying the parameter η changes the anisotropy of the operator Dη. A similar anisotropic operator
was considered in the benchmark paper [14] (Test 3). The aim of problem P2 is to study sensitivity of the
preconditioner on anisotropies, mesh and time discretization parameters.

The last problem features an additional convective term and the aim is to study the performance of the pre-
conditioner up to the convection dominated regime. The problem setting is inspired by a widely used benchmark
for transport equations [19]. To this end, we consider the 2d unit square Ω = (0, 1)2, time interval I = (0, 2π)
and the following problem:

Problem 3 (P3). Given a parameter ε > 0 find u such that

∂tu + w · ∇u − εΔu = 0 in I × Ω,

u = 0 on I × ∂Ω,

u(0, ·) = u0 on Ω,

(5.4)

where w(x, y) =
(

0.5 − y
x − 0.5

)
and the initial condition is a “smooth hump” given by

u0(x, y) =

{
1+cos(πr(x,y))

4 for r(x, y) = 1
r0

√
(x − x0)2 + (y − y0)2 ≤ 1,

0 else,

with r0 = 0.15 and (x0, y0) = (0.25, 0.5).
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Figure 2. Convergence plot of the dG(k) methods for k = 1, 2, 3.

Notice: The operator in (5.4) is no longer symmetric. Therefore, this example is not covered by the analysis
presented in Section 3.2. However, we will show that even when the diffusion coefficient ε → 0, the preconditioner
performs well.

5.2. Convergence results

The aim of this subsection is to verify our implementation. To this end, we consider problem P1 in 1d, and
discretize in space using quadratic polynomials. With this choice, the overall error will only be due to time
discretization and errors due to solving the discrete systems (e.g. tolerances of the solvers).

Given a numerical solution uh, let

e2(uh) :=

(∫ T

0

||∇(u − uh)||2L2(Ω)

)1/2

(5.5)

denote its L2(H1) error. To discretize in time, we employ the dG(k) methods for k = 1, . . . , 3. Accordingly,
convergence rates of k + 1 with respect to τ are expected for e2(uh). For fixed mesh size parameter h = 1e− 1,
the convergence behavior of the dG(k) methods with respect to e2(uh) is plotted in Figure 2 confirming this
expectation.

For the dG(k) and all combinations of h ∈
{
10−l, l = 1, . . . , 3

}
and τ ∈

{
0.1 · 2−j, j = 0, . . . , 7

}
, we solve the

space-time system (2.14) using

• the MATLAB operator \ (denoted by “direct solve”),
• the preconditioning strategy based on Algorithm 1 (denoted by “Algorithm 1”), with an exact evaluation of

the preconditioner as described in the previous section.

As already indicated by Figure 2, for fixed h, all dG(k) methods and solution strategies exhibit the predicted
convergence behavior as τ → 0. In the parameter range given above, we do not observe any differences between
the direct solve and Algorithm 1 results for the dG(1) method. Recalling that a tolerance of tol = 1e − 10 is
used as termination criterion for Algorithm 1, we expect errors due to inexactly solving the linear system to
become visible for h, τ → 0. The e2(uh) errors for the dG(2) and dG(3) methods and smallest time step sizes
τ ∈

{
0.1 · 2−j , j = 3, . . . , 7

}
are shown in Table 2. Clearly, the predicted convergence rates can be observed

for all methods and solution strategies. However, for very small τ , the overall error e2(uh) is influenced by the
accuracy of the corresponding linear system solver. In this respect, the direct solver shows less sensitivity on
the mesh size parameter h than our strategy based on Algorithm 1. We would like to emphasize that only
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Table 2. Problem P1: Error e2(uh) of the numerical solution obtained by the dG(2) and dG(3)
methods, solved using Algorithm 1 and a direct solver for different combinations of h and τ .

dG(2) dG(3)

h = 1e-1

Algorithm 1 Direct solve Algorithm 1 Direct solve

τ e2(uh) EOC e2(uh) EOC e2(uh) EOC e2(uh) EOC

1.2500e-02 1.2049e-04 3.00 1.2049e-04 3.00 2.9086e-06 3.99 2.9086e-06 3.99

6.2500e-03 1.5075e-05 3.00 1.5075e-05 3.00 1.8196e-07 4.00 1.8196e-07 4.00

3.1250e-03 1.8848e-06 3.00 1.8848e-06 3.00 1.1375e-08 4.00 1.1375e-08 4.00

1.5625e-03 2.3561e-07 3.00 2.3561e-07 3.00 7.1109e-10 4.00 7.1101e-10 4.00

7.8125e-04 2.9452e-08 3.00 2.9452e-08 3.00 1.2244e-10 2.54 4.4438e-11 4.00

h = 1e-2

Algorithm 1 Direct solve Algorithm 1 Direct solve

τ e2(uh) EOC e2(uh) EOC e2(uh) EOC e2(uh) EOC

1.2500e-02 1.2049e-04 3.00 1.2049e-04 3.00 2.9086e-06 3.99 2.9086e-06 3.99

6.2500e-03 1.5075e-05 3.00 1.5075e-05 3.00 1.8196e-07 4.00 1.8196e-07 4.00

3.1250e-03 1.8848e-06 3.00 1.8848e-06 3.00 1.1374e-08 4.00 1.1375e-08 4.00

1.5625e-03 2.3561e-07 3.00 2.3561e-07 3.00 7.1434e-10 3.99 7.1101e-10 4.00

7.8125e-04 2.9452e-08 3.00 2.9452e-08 3.00 1.6314e-10 2.13 4.4438e-11 4.00

h = 1e-3

Algorithm 1 Direct solve Algorithm 1 Direct solve

τ e2(uh) EOC e2(uh) EOC e2(uh) EOC e2(uh) EOC

1.2500e-02 1.2049e-04 3.00 1.2049e-04 3.00 2.9086e-06 3.99 2.9086e-06 3.99

6.2500e-03 1.5075e-05 3.00 1.5075e-05 3.00 1.8203e-07 4.00 1.8196e-07 4.00

3.1250e-03 1.8848e-06 3.00 1.8848e-06 3.00 1.1445e-08 3.99 1.1375e-08 4.00

1.5625e-03 2.3563e-07 3.00 2.3561e-07 3.00 2.3065e-09 2.31 7.1106e-10 4.00

7.8125e-04 2.9970e-08 2.97 2.9452e-08 3.00 2.0278e-09 0.19 4.6148e-11 3.95

a fixed termination criterion of tol = 1e − 10 for the relative residual was used in Algorithm 1, while different
termination criteria for Algorithm 1 could be considered for such extreme cases.

5.3. Performance of the preconditioner

We now come to the main obective of our presentation, the efficient solution of the systems. We elaborate on
the performance and stability of the proposed preconditioner.

5.3.1. Performance of the preconditioner for problem P1

We first consider problem P1 in one space dimension, discretize in space using piecewise quadratic polynomials
and use different mesh sizes and time step sizes τ . To be precise, we choose τ ∈ {10−l, l = 1, . . . , 4} and
h ∈ {0.2 × 2−l, l = 0, . . . 4}. As time discretization schemes, we consider dG(1), dG(2) and dG(3).

Recall that the main numerical effort in the solution process lies in solving implicit Euler-like problems: for
each block in equation (3.11) (corresponding to a pair of complex eigenvalues of the matrix b−1g), the Schur
complement formulation equation (4.13) is solved using Algorithm 1. In each iteration, an application of the
preconditioner requires the solution of two implicit Euler-like problems. Once the essential unknown w2 of the
block is obtained, one further solve with the mass matrix for the second unknown w1 is needed, as shown
in (4.15). Also, for real eigenvalues in (3.11), only one additional solve is required. To get an idea of the overall
effort, all Euler-like solves for the preconditioner matrix (μoptM + τnA) are recorded and also the maximum
number of required CG iterations in Algorithm 1.
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Table 3. Problem P1: From top to bottom: dG(1), dG(2), dG(3), each entry of table: maximum
number of CG iterations of Algorithm 1 per block/total number of implicit Euler solves.

τ\h 2.00e-01 1.00e-01 5.00e-02 2.50e-02 1.25e-02

1.00e-01 5/10 5/10 5/10 5/10 5/10

1.00e-02 5/10 6/12 6/12 7/14 7/14

1.00e-03 5/10 6/12 6/12 6/12 6/12

1.00e-04 4/ 8 4/ 8 5/10 5/10 5/10

τ\h 2.00e-01 1.00e-01 5.00e-02 2.50e-02 1.25e-02

1.00e-01 5/11 7/15 7/15 7/15 7/15

1.00e-02 5/11 7/15 7/15 8/17 8/17

1.00e-03 5/11 6/13 7/15 7/14 7/15

1.00e-04 4/9 5/11 6/13 6/13 6/13

τ\h 2.00e-01 1.00e-01 5.00e-02 2.50e-02 1.25e-02

1.00e-01 5/18 8/26 8/26 8/26 8/26

1.00e-02 4/16 7/22 8/26 8/26 9/28

1.00e-03 5/18 7/22 7/22 7/22 7/22

1.00e-04 4/14 5/16 6/20 6/20 6/20

For each dG(k) and each combination of τ and h, these counts are shown in Table 3. As can be seen, typically
only a couple of iterations are needed for Algorithm 1 to converge. For instance, for dG(2), whose discretization
results in one 1× 1 and one 2× 2 block Algorithm 1 needs at most 8 iterations for the Schur complement PCG
solve, each of which accounts for 2 implicit Euler-like solves, plus one solve for the 1 × 1 block, which gives a
total of 17 required solves.

Comparing the total number of implicit Euler-like solves, from Table 3 we can also conclude that the pre-
conditioned dG(2) method is “relatively cheap” compared to the dG(1) method and its successor dG(3). This
is due to the fact that the block diagonal matrix Sh in (3.11) contains only one additional “cheap” 1× 1 block
compared to dG(1). For dG(3) on the other hand, Sh is made up of two “expensive” 2× 2 blocks requiring two
Schur complement solves.

We now elaborate on the performance of the preconditioner when applied to larger systems in 3d. To this end
we discretize problem P1 in space using linear finite elements defined on regular triangulations of the unit cube
Ω = (0, 1)3 ⊂ R3 consisting of ndof ∈ {4096, 32 768, 262 144, 2 097 152} nodes. We consider dG(k), k = 0, . . . , 4
and choose a constant time step size of τ = 1e − 2 corresponding to 100 time steps to discretize in time. Note
that the fully coupled dG(k) space-time system consists of (k + 1) × ndof unknowns. The following strategies
are used to solve this problem:

• direct solve of the full space-time system (2.14) using the MATLAB operator \,
• an iterative solution of the space-time system (2.14) using plain GMRES with restart after every 10th

iteration and the relative stopping criterion of 1e − 10 that we use for Algorithm 1,
• GMRES as above, but with an incomplete LU factorization with no fill-in (ILU(0)) of the space-time system

as preconditioner,
• The proposed preconditioning strategy based on Algorithm 1, where the application of the precondi-

tioner A−1
opt = (μoptM + τnA)−1 is done using the MATLAB operator \, i.e. an “exact” evaluation of

the preconditioner,
• Algorithm 1, where the preconditioner is solved approximatively by the algebraic multigrid solver AGMG,

with two different stopping tolerances δ ∈ {1e − 10, 1e− 5}, i.e. an “inexact” but efficient application of A−1
opt.

For each of these solution strategies and discretization parameters k and ndof we measure the total CPU time
needed to solve for 100 time steps and report our results in Table 4. Whenever Algorithm 1 is used we keep
track of the maximum number of PCG iterations required in Algorithm 1 and report it in brackets.
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Figure 3. Solution of problem P2 at t = 1 for three anisotropy parameters η = 1, 1e − 1, 1e − 3.

We first note that for our machine equipped with 16GB of memory, a direct solution of the systems generally
fails for ndof ≥ 262 144 due to insufficient memory (indicated by the symbol † in the table). This also prohibits
the use of Algorithm 1 with an exact evaluation of the preconditioner for these problem sizes. Solution strate-
gies based on direct solves of either the space-time system or the exact application of the preconditioner in
Algorithm 1 prove to be very inefficient with increasing number of spatial degrees of freedom in general. Notice
however that, as already seen in our one-dimensional experiments, the maximum number of PCG iterations
required for Algorithm 1 to converge is insensitive with respect to the space discretization parameter ndof and
temporal degree k as predicted by the analysis.

For smaller problem sizes with ndof ≤ 32 768 we observe that an iterative solution of the fully coupled space-
time system using ILU preconditioned GMRES turns out to be acceptably efficient. However, we observe a strong
dependency on the temporal polynomial degree k and the number of spatial degrees of freedom ndof rendering
this strategy rather inefficient for larger problems. This dependency is obviously even more pronounced when
an unpreconditioned GMRES solver is used to solve the systems. For the largest system with ndof = 2097152 an
assembly of the dG(k) space-time system for k > 0 exceeded the system’s memory limit and an iterative solution
of the system using GMRES was not possible in these cases. Also, for k = 0 a solution with unpreconditioned
GMRES would have taken longer than 12 hours and was aborted which is indicated by †† in the table.

Algorithm 1 in combination with the AGMG multigrid solver to approximate the operator A−1
opt proves to be

very efficient and clearly superior in our experiments. We observe an (almost) linear dependency of the required
CPU time on the number of degrees of freedom (ndof) and only a very mild dependency on the temporal degree
k. Additional savings can be obtained from tuning the AGMG stopping criterion. Notice that compared to
the exact application of the preconditioner, the maximum number of required PCG iterations in Algorithm 1
did (almost) not change, even when a relatively coarse termination tolerance of δ = 1e − 5 was used. This
indicates that inexact solvers for the operator A−1

opt show only little influence on the stability of the proposed
preconditioning strategy.

5.3.2. Performance of the preconditioner for problem P2

For the anisotropic test problem P2, we discretize the unit disk using quasi uniform meshes of mesh sizes
h ∈ {0.1× 2−l, l = 0, . . . 2} and employ quadratic finite elements. The idea is to vary the anisotropy parameter
η ∈ {1, 1e − 1, 1e − 3} to study the influence of anisotropy on the performance of the preconditioner. Typical
solution profiles to problem P2 for different values of η are depicted in Figure 3.

We also vary step size τ ∈ {10−l, l = 1, . . . , 4} and track the maximum total number of required implicit
Euler solves which our preconditioner needs to solve the coupled system (3.11). Results for dG(k), k ∈ {1, 2, 3}
are shown in Table 5.

Clearly, the maximum number of required solves neither depends on the anisotropy parameter η nor time
and space discretization parameters, corroborating the uniform a priori result (3.22).
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Table 4. Problem P1 (3d): CPU times (in seconds) needed to solve 100 time steps of the dG(k)
methods, k = 0, . . . , 4 on four refinement levels: solution of system (2.14) using MATLAB \
(first row), using plain GMRES and ILU preconditioned GMRES (second and third row),
using Algorithm 1 with exact evaluation of preconditioner and using Algorithm 1 with inexact
preconditioner realized by AGMG (last three rows). For methods based on Algorithm 1, the
maximum number of required PCG iterations is shown in brackets.

dG(0) dG(1)
Strategy\ndof 4096 32 768 262144 2 097 152 4096 32 768 262 144 2 097 152

Direct solve 2.48 158.22 † † 10.31 1030.71 † †
GMRES 2.48 45.09 1739.88 †† 7.09 141.86 4287.30 †

GMRES (ILU) 1.26 14.10 318.81 6616.65 2.40 37.53 813.99 †
Algorithm 1, exact 2.73 (0) 160.09 (0) † † 32.55 (6) 1917.66 (6) † †

Algorithm 1, δ = 1e− 10 1.04 (0) 9.83 (0) 93.32 (0) 922.27 (0) 10.10 (6) 89.56 (6) 1059.80 (7) 9848.30 (7)
Algorithm 1, δ = 1e− 5 0.83 (0) 7.79 (0) 76.50 (0) 676.42 (0) 8.94 (6) 78.44 (6) 868.19 (7) 7089.91 (7)

dG(2) dG(3)
Strategy\ndof 4096 32 768 262144 2 097 152 4096 32 768 262 144 2 097 152

Direct solve 28.18 3221.89 † † 58.06 7485.93 † †
GMRES 13.94 391.18 10406.42 † 21.15 635.69 22080.81 †

GMRES (ILU) 4.02 77.04 1527.15 † 6.25 122.11 2513.50 †
Algorithm 1, exact 36.89 (7) 2410.70 (8) † † 62.75 (7) 3590.68 (8) † †

Algorithm 1, δ = 1e− 10 11.65 (7) 111.19 (8) 1311.53 (8) 11 823.68 (8) 19.04 (7) 171.11 (8) 2032.90 (9) 19 052.17 (9)
Algorithm 1, δ = 1e− 5 12.16 (7) 102.88 (8) 1126.74 (8) 8786.58 (8) 18.43 (7) 171.14 (8) 1784.25 (9) 13 942.03 (9)

dG(4)
Strategy\ndof 4096 32 768 262 144 2 097 152

Direct solve 103.50 13 975.47 † †
GMRES 38.38 1053.40 36 439.17 †

GMRES (ILU) 8.68 176.75 4304.79 †
Algorithm 1, exact 72.47 (8) 4362.67 (9) † †

Algorithm 1, δ = 1e − 10 19.63 (8) 221.22 (9) 2292.01 (9) 20 927.26 (10)
Algorithm 1, δ = 1e− 5 19.42 (8) 213.95 (9) 2057.80 (9) 15 663.70 (10)

Table 5. Problem P2: From top to bottom: dG(1), dG(2), dG(3), each entry of table: maximum
number of implicit Euler solves for anisotropy parameters η = 1/η = 1e − 1/η = 1e − 3.

τ\h 1.00e-01 5.00e-02 2.50e-02

1.00e-01 10/10/10 12/12/12 12/12/12

1.00e-02 8/10/12 10/12/12 10/12/12

1.00e-03 10/ 8/ 8 10/10/10 10/10/10

1.00e-04 6/ 6/ 6 8/ 6/ 6 8/ 8/ 8

τ\h 1.00e-01 5.00e-02 2.50e-02

1.00e-01 11/13/13 13/15/15 15/15/15

1.00e-02 11/15/15 13/15/15 13/15/15

1.00e-03 11/11/9 13/11/11 13/13/13

1.00e-04 7/ 7/ 7 9/9/ 7 9/9/9

τ\h 1.00e-01 5.00e-02 2.50e-02

1.00e-01 18/22/22 22/22/26 26/24/68

1.00e-02 20/20/20 20/22/22 22/22/22

1.00e-03 16/14/14 18/16/16 20/20/20

1.00e-04 12/12/12 14/12/12 14/14/14
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Figure 4. Solution of problem P3 at t = 2π for diffusion coefficients ε = 1, 1e − 2, 1e − 6, 0.

5.3.3. Performance of the preconditioner for problem P3

Finally, we elaborate on the performance of the preconditioner when applied to convection dominated prob-
lems. In this case the analysis presented in Section 3 does not apply directly. To account for the loss of symmetry,
we change Algorithm 1 which was based on CG in favor of BiCG, applied to the same left-right preconditioned
operator (3.16). In contrast to CG, BiCG needs two applications of the preconditioner which makes it approx-
imately twice as expensive per iteration. To allow for a “fair” comparison with CG in terms of the number of
iterations required for Algorithm 1 to converge (which is essentially determined by the condition number of the
preconditioned system), we record the maximum number of BiCG iterations in Algorithm 1 this time.

Just as for problem P2, we employ quadratic finite elements on uniform triangulations of the unit square
for space discretization. For different mesh and time step sizes we vary the diffusion coefficient ε ∈ {1, 1e −
2, 1e−6, 0}. The results are shown in Table 6, and a Figure corresponding to the solution at t = 2π for different
diffusion coefficients is shown in Figure 4.

We observe that the number of iterations does not show any particular dependency on both, problem and
discretization parameters, even when diffusion is very small. Although this scenario was not covered by our
analysis, this an indication that the proposed preconditioning strategy also works in the convection dominated
regime.
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Table 6. Problem P3: From top to bottom: dG(1), dG(2), dG(3), each entry of table: maximum
number of BiCG iterations for diffusion coefficients ε = 1/ε = 1e − 2/ε = 1e − 6/ε = 0.

τ\h 1.00e-01 5.00e-02 2.50e-02

1.00e-01 4/4/5/5 4/4/6/6 4/4/5/5

1.00e-02 4/3/3/3 4/4/3/3 4/3/3/3

1.00e-03 4/3/2/2 4/3/2/2 4/3/2/2

τ\h 1.00e-01 5.00e-02 2.50e-02

1.00e-01 5/5/7/7 5/5/8/8 5/5/8/7

1.00e-02 4/4/3/3 4/4/3/3 4/4/5/5

1.00e-03 4/3/2/2 5/3/2/2 5/4/2/2

τ\h 1.00e-01 5.00e-02 2.50e-02

1.00e-01 5/5/7/7 5/5/9/9 5/5/9/9

1.00e-02 5/4/3/3 5/4/3/3 5/4/4/5

1.00e-03 5/3/2/2 6/3/2/2 5/4/2/2

6. Conclusion

We have developed an efficient yet conceptually simple preconditioner for the solution of systems arising from
variational time discretization methods of arbitrary order. The main ingredients are a transformation of the
system into real block diagonal form and a preconditioned Schur complement approach for the solution of the
resulting 2× 2 block systems. The preconditioner is based on an inexact factorization of the Schur complement
operator consisting of implicit Euler-like problems. Consequently, the entire solution strategy reduces to solving
simple Euler-like problems for which common efficient solution techniques can be recycled. Analysis shows that
in case of a symmetric, positive operator Ah the preconditioned Schur complement operator has condition
number ≤ 2 independent of all space and time discretization parameters. Numerical experiments indicate the
robustness of our preconditioner.
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[1] T. Akman and B. Karasözen, Variational time discretization methods for optimal control problems governed by diffusion–
convection–reaction equations. J. Comput. Appl. Math. 272 (2014) 41–56.

[2] G. Akrivis, Ch. Makridakis and R.H. Nochetto, Galerkin and Runge–Kutta methods: unified formulation, a posteriori error
estimates and nodal superconvergence. Numer. Math. 118 (2011) 429–456.
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