In this article, we work on nontraditional models where the so-called traditional approximation on the Coriolis force is removed. In the derivation of the quasi-geostrophic equations, we carefully consider terms in , where (aspect ratio) and (Rossby number) are both small numbers. We provide here some rigorous crossed-asymptotics with regards to these parameters, prove some mathematical results and compare QHQG and QG models.
Accepté le :
DOI : 10.1051/m2an/2016041
Mots-clés : Ocean modeling, Coriolis force, traditional approximation, tilted quasi-geostrophic equations, slanted rotation
@article{M2AN_2017__51_2_427_0, author = {Lucas, Carine and McWilliams, James C. and Rousseau, Antoine}, title = {On nontraditional quasi-geostrophic equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {427--442}, publisher = {EDP-Sciences}, volume = {51}, number = {2}, year = {2017}, doi = {10.1051/m2an/2016041}, mrnumber = {3626405}, zbl = {1364.35280}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016041/} }
TY - JOUR AU - Lucas, Carine AU - McWilliams, James C. AU - Rousseau, Antoine TI - On nontraditional quasi-geostrophic equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 427 EP - 442 VL - 51 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016041/ DO - 10.1051/m2an/2016041 LA - en ID - M2AN_2017__51_2_427_0 ER -
%0 Journal Article %A Lucas, Carine %A McWilliams, James C. %A Rousseau, Antoine %T On nontraditional quasi-geostrophic equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 427-442 %V 51 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016041/ %R 10.1051/m2an/2016041 %G en %F M2AN_2017__51_2_427_0
Lucas, Carine; McWilliams, James C.; Rousseau, Antoine. On nontraditional quasi-geostrophic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 427-442. doi : 10.1051/m2an/2016041. http://www.numdam.org/articles/10.1051/m2an/2016041/
The dissipative quasigeostrophic equations. Mathematika 28 (1981) 265–285. | DOI | MR | Zbl
and ,Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean. SIAM J. Math. Anal. 25 (1994) 1023–1068. | DOI | MR | Zbl
and ,F.J. Bretherton and M.J. Karweit, Mid-ocean mesoscale modeling. In Numerical Models of Ocean Circulation. Ocean Affairs Board, National Research Council, National Academy of Sciences, Washington, DC (1975) 237–249.
Geostrophic turbulence. J. Atmos. Sci. 28 (1971) 1087–1095. | DOI
,Convergence of weak solutions for the primitive system of the quasigeostrophic equations. Asymptot. Anal. 42 (2005) 173–209. | MR | Zbl
,Flows in a rotating spherical shell: the equatorial case. J. Fluid Mech. 276 (1994) 233–260. | DOI | MR | Zbl
and ,B. Cushman-Roisin, Introduction to Geophysical Fluid Dynamics. Prentice Hall (1994).
Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech. 674 (2011) 174–195. | DOI | MR | Zbl
,C. Eckart, Hydrodynamics of oceans and atmospheres. Pergamon Press, New York (1960). | MR | Zbl
Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity Commun. Partial Differ. Eq. 21 (1996) 619–658. | DOI | MR | Zbl
and ,Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers Geophys. Astrophys. Fluid Dyn. 87 (1998) 1–30. | DOI | MR
and ,Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46 (2008) 05. | DOI
, , , ,Ekman layers of rotating fluids, the case of well prepared initial data. Commun. Partial Differ. Eq. 22 (1997) 953–975. | MR | Zbl
and ,Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows. J. Fluid Mech. 555 (2006) 233–274. | DOI | MR | Zbl
, , and ,Quasi-hydrostatic primitive equations for ocean global circulation models. Chinese Ann. Math. B 31 (2010) 1–20. | DOI | MR | Zbl
, and ,New developments and cosine effect in the viscous Shallow-Water and quasi-geostrophic equations. SIAM Multiscale Model. Simul. 7 (2008) 796–813. | DOI | MR | Zbl
and ,A note on a consistent quasigeostrophic model in a multiply connected domain. Dynamics of Atmospheres and Oceans 1 (1977) 427–441. | DOI
,Ekman layers of rotating fluids: The case of general initial data. Commun. Pure Appl. Math. 53 (2000) 432–483. | DOI | MR | Zbl
,Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res. 102 (1997) 5733–5752. | DOI
, and ,The equations of motion for a shallow rotating atmosphere and the “traditional approximation”. J. Atmospheric Sci. 23 (1966) 626–628. | DOI
,Reply (to George Veronis). J. Atmospheric Sci. 25 (1968) 1155–1157.
,Equatorial Meridional Flows: Rotationally Induced Circulations. Pure Appl. Geophys. 157 (2000) 1767–1779. | DOI
,Dynamically equilibrium shape of intrusive vortex formations in the ocean. Fluid Dynamics 38 (2003) 663–669. | DOI | MR | Zbl
and ,Laboratory experiments with tilted convective plumes on a centrifuge: a finite angle between the buoyancy force and the axis of rotation. J. Fluid Mech. 506 (2004) 217–244. | DOI | Zbl
,Idealized models of slantwise convection in a baroclinic flow. J. Phys. Oceanogr. 32 (2002) 558–572. | DOI | MR
, and ,Comments on Phillips’ proposed simplification of the equations of motion for a shallow rotating atmosphere. J. Atmospheric Sci. 25 (1968) 1154–1155. | DOI
,Large scale ocean circulation. Adv. Appl. Mech. 13 (1973) 1–92. | DOI
,Comments on the equations of motion for a shallow rotating atmosphere and the ‘traditionnal approximation’. J. Atmospheric Sci. 27 (1970) 504–506. | DOI
,Dynamically consistent quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Quarterly J. Roy. Meteorol. Soc. 121 (1995) 399–418. | DOI
and ,Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Quarterly J. Roy. Meteorol. Soc. 131 (2005) 2081–2107. | DOI
, , and ,Tilted convective plumes in numerical experiments. Ocean Model. 12 (2006) 101–111. | DOI
and ,Cité par Sources :