On nontraditional quasi-geostrophic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 427-442.

In this article, we work on nontraditional models where the so-called traditional approximation on the Coriolis force is removed. In the derivation of the quasi-geostrophic equations, we carefully consider terms in δ/ε, where δ (aspect ratio) and ε (Rossby number) are both small numbers. We provide here some rigorous crossed-asymptotics with regards to these parameters, prove some mathematical results and compare QHQG and QG models.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016041
Classification : 35Q35, 76U05, 76M45, 35B40
Mots clés : Ocean modeling, Coriolis force, traditional approximation, tilted quasi-geostrophic equations, slanted rotation
Lucas, Carine 1 ; McWilliams, James C. 2 ; Rousseau, Antoine 3

1 MAPMO UMR CNRS 7349, Fédération Denis Poisson FR CNRS 2964, Université d’Orléans, 45067 Orléans cedex 2, France.
2 Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles (UCLA), Mathematical Sciences Building, Room 7983, Los Angeles, CA 90095-1565. USA.
3 Inria and IMAG UMR CNRS 5159, Inria Chile, Av Apoquindo 2827, Las Condes, Santiago de Chile, Chile.
@article{M2AN_2017__51_2_427_0,
     author = {Lucas, Carine and McWilliams, James C. and Rousseau, Antoine},
     title = {On nontraditional quasi-geostrophic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {427--442},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {2},
     year = {2017},
     doi = {10.1051/m2an/2016041},
     mrnumber = {3626405},
     zbl = {1364.35280},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016041/}
}
TY  - JOUR
AU  - Lucas, Carine
AU  - McWilliams, James C.
AU  - Rousseau, Antoine
TI  - On nontraditional quasi-geostrophic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 427
EP  - 442
VL  - 51
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016041/
DO  - 10.1051/m2an/2016041
LA  - en
ID  - M2AN_2017__51_2_427_0
ER  - 
%0 Journal Article
%A Lucas, Carine
%A McWilliams, James C.
%A Rousseau, Antoine
%T On nontraditional quasi-geostrophic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 427-442
%V 51
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016041/
%R 10.1051/m2an/2016041
%G en
%F M2AN_2017__51_2_427_0
Lucas, Carine; McWilliams, James C.; Rousseau, Antoine. On nontraditional quasi-geostrophic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 427-442. doi : 10.1051/m2an/2016041. http://www.numdam.org/articles/10.1051/m2an/2016041/

A.F. Bennett and P.E. Kloeden, The dissipative quasigeostrophic equations. Mathematika 28 (1981) 265–285. | DOI | MR | Zbl

A.J. Bourgeois and J.T. Beale, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean. SIAM J. Math. Anal. 25 (1994) 1023–1068. | DOI | MR | Zbl

F.J. Bretherton and M.J. Karweit, Mid-ocean mesoscale modeling. In Numerical Models of Ocean Circulation. Ocean Affairs Board, National Research Council, National Academy of Sciences, Washington, DC (1975) 237–249.

J.G. Charney, Geostrophic turbulence. J. Atmos. Sci. 28 (1971) 1087–1095. | DOI

F. Charve, Convergence of weak solutions for the primitive system of the quasigeostrophic equations. Asymptot. Anal. 42 (2005) 173–209. | MR | Zbl

A. Colin De Verdière and R. Schopp, Flows in a rotating spherical shell: the equatorial case. J. Fluid Mech. 276 (1994) 233–260. | DOI | MR | Zbl

B. Cushman-Roisin, Introduction to Geophysical Fluid Dynamics. Prentice Hall (1994).

P.J. Dellar, Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech. 674 (2011) 174–195. | DOI | MR | Zbl

C. Eckart, Hydrodynamics of oceans and atmospheres. Pergamon Press, New York (1960). | MR | Zbl

P.F. Embid and A.J. Majda, Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity Commun. Partial Differ. Eq. 21 (1996) 619–658. | DOI | MR | Zbl

P.F. Embid and A.J. Majda, Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers Geophys. Astrophys. Fluid Dyn. 87 (1998) 1–30. | DOI | MR

T. Gerkema, J.T.F. Zimmerman, L.R.M. Maas, H. Van Haren, Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46 (2008) 05. | DOI

E. Grenier and N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data. Commun. Partial Differ. Eq. 22 (1997) 953–975. | MR | Zbl

K. Julien, E. Knobloch, R. Milliff and J. Werne, Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows. J. Fluid Mech. 555 (2006) 233–274. | DOI | MR | Zbl

C. Lucas, M. Petcu and A. Rousseau, Quasi-hydrostatic primitive equations for ocean global circulation models. Chinese Ann. Math. B 31 (2010) 1–20. | DOI | MR | Zbl

C. Lucas and A. Rousseau, New developments and cosine effect in the viscous Shallow-Water and quasi-geostrophic equations. SIAM Multiscale Model. Simul. 7 (2008) 796–813. | DOI | MR | Zbl

J.C. Mcwilliams, A note on a consistent quasigeostrophic model in a multiply connected domain. Dynamics of Atmospheres and Oceans 1 (1977) 427–441. | DOI

N. Masmoudi, Ekman layers of rotating fluids: The case of general initial data. Commun. Pure Appl. Math. 53 (2000) 432–483. | DOI | MR | Zbl

L. Perelman J. Marshall, C. Hill and A. Adcroft, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res. 102 (1997) 5733–5752. | DOI

N.A. Phillips, The equations of motion for a shallow rotating atmosphere and the “traditional approximation”. J. Atmospheric Sci. 23 (1966) 626–628. | DOI

N.A. Phillips, Reply (to George Veronis). J. Atmospheric Sci. 25 (1968) 1155–1157.

W.H. Raymond, Equatorial Meridional Flows: Rotationally Induced Circulations. Pure Appl. Geophys. 157 (2000) 1767–1779. | DOI

I.P. Semenova and L.N. Slezkin, Dynamically equilibrium shape of intrusive vortex formations in the ocean. Fluid Dynamics 38 (2003) 663–669. | DOI | MR | Zbl

V.A. Sheremet, Laboratory experiments with tilted convective plumes on a centrifuge: a finite angle between the buoyancy force and the axis of rotation. J. Fluid Mech. 506 (2004) 217–244. | DOI | Zbl

F. Straneo, M. Kawase and S.C. Riser, Idealized models of slantwise convection in a baroclinic flow. J. Phys. Oceanogr. 32 (2002) 558–572. | DOI | MR

G. Veronis, Comments on Phillips’ proposed simplification of the equations of motion for a shallow rotating atmosphere. J. Atmospheric Sci. 25 (1968) 1154–1155. | DOI

G. Veronis, Large scale ocean circulation. Adv. Appl. Mech. 13 (1973) 1–92. | DOI

R.K. Wangsness, Comments on the equations of motion for a shallow rotating atmosphere and the ‘traditionnal approximation’. J. Atmospheric Sci. 27 (1970) 504–506. | DOI

A.A. White and R.A. Bromley, Dynamically consistent quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Quarterly J. Roy. Meteorol. Soc. 121 (1995) 399–418. | DOI

A.A. White, B.J. Hoskins, I. Roulstone and A. Staniforth, Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Quarterly J. Roy. Meteorol. Soc. 131 (2005) 2081–2107. | DOI

A. Wirth and B. Barnier, Tilted convective plumes in numerical experiments. Ocean Model. 12 (2006) 101–111. | DOI

Cité par Sources :