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ON NONTRADITIONAL QUASI-GEOSTROPHIC EQUATIONS

Carine Lucas1, James C. McWilliams2 and Antoine Rousseau3

Abstract. In this article, we work on nontraditional models where the so-called traditional approx-
imation on the Coriolis force is removed. In the derivation of the quasi-geostrophic equations, we
carefully consider terms in δ/ε, where δ (aspect ratio) and ε (Rossby number) are both small num-
bers. We provide here some rigorous crossed-asymptotics with regards to these parameters, prove some
mathematical results and compare QHQG and QG models.
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1. Introduction

Equations used to model oceans rely on several hypotheses, depending on the underlying accuracy require-
ments in numerical simulations. One of these hypotheses is the so-called traditional approximation, which consists
in neglecting the cosine part of the Coriolis force, modifying the zonal and vertical components of the momen-
tum equations (see f∗ terms in Eqs. (2.1a) and (2.1c)). This approximation has been widely discussed in the
literature (see [9] and the correspondence in [20, 21, 26, 28]).

Discussions on the traditional approximation usually appear when studying oceans near the equator. Indeed,
the Coriolis force expresses as

−→
Ω × U where U is the fluid velocity, and

−→
Ω = Ωt(0, cos θ, sin θ), θ being the

latitude. When modeling ocean in the equatorial zone, the latitude becomes smaller and the cosine part of the
Coriolis force is not negligible compared to the sine part. This is the approach developed for example in [6],
based on [27], or in [22], where the author refers to [29] to assert that the cos θ Coriolis terms cannot be omitted.

These cosine terms are traditionally not considered in the quasi-geostrophic equations that are very familiar
to oceanographers and meteorologists. These equations have been extensively used for modeling oceanic and
atmospheric circulations [3,4]. A way to obtain the quasi-geostrophic model is to perform an asymptotic expan-
sion, with respect to the Rossby number, in the 3D primitive (hydrostatic) equations (PEs). The model is also
very familiar to applied mathematicians, and several studies establishing the well-posedness of the corresponding
boundary-value problem have been published (see e.g., [2, 13, 18]). Here, as we do not perform the traditional
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approximation of the Coriolis force, we shall start this paper with the quasi-hydrostatic PEs (2.1) (see [15] for
a mathematical study).

As mentioned by some of the authors in [16] for the shallow water equations and in [15] for the 3D primitive
equations, taking the cosine terms into account leads to a second order correction of the traditional hydrostatic
approximation, towards non-hydrostatic modeling: hence the naming “quasi-hydrostatic” (QH) ocean modeling.
Even if it was not named that way in the literature, the quasi-hydrostatic quasi-geostrophic model (QHQG) has
already been studied by several authors: see for example the so-called tilted QG in [14], with formal derivation
but no well-posedness result, or the slanted model in [11] in which small Rossby asymptotics are analyzed by a
fast wave averaging approach.
A key parameter in the following is the nontraditional parameter λ = δ cot θ where δ = H/L is the domain
aspect ratio. In most cases (ocean modeling away from the equator), λ is small. But when approaching the
equator and/or in cases where the typical aspect ratio is not small, nontraditional models should rather be
considered.

In this work we have a twofold objective:

– show that the derivation of the (nontraditional) QHQG model and its well-posedness do not raise any
additional difficulty, compared to traditional QG. For this reason, we will mimic the reasoning of the reference
papers [1, 2] and shall underline the (few) necessary adjustments required for the QH regime. The authors
believe that this should be a key argument to prefer QHQG rather than QG: indeed, physics is more accurate
while theoretical results can be extended from QG to QHQG (as for HPE vs QHPE, see [15]). This is the
objective of Section 2;

– position the so-called QHQG equations in the framework of geostrophic and hydrostatic regimes. Looking
at the scheme of Figure 2, one can see that the geostrophic regime (ε → 0) has been studied in the literature
both in the traditional (see 2©, bottom part of Fig. 2, e.g. [2] and [5]) and nontraditional (see 1©, top of
Fig. 2, e.g. [11]) configurations. In Section 3 below, we show that solutions of the QHQG model converge
to solutions of the QG model as λ = δ cot θ goes to zero. In other words, we claim that QG is a relevant
approximation of QHQG when λ is a small parameter.

2. Quasi-geostrophic equations

Since the QG equations are obtained in the zero-limit of the Rossby number (large rotational effects), we
choose to retain all rotating terms in the original equations, before performing the asymptotic analysis. We will
see in equation (2.16) that the modified QG equations, that we will call quasi-hydrostatic quasi-geostrophic
(QHQG) equations, are very similar to the traditional QG ones, except that they raise a new vertical direction
(denoted Z hereafter), which differs from the traditional vertical direction z, see also [14]. The tilt between z
and Z is proportional to the nondimensional parameter λ introduced in Section 2.1.1, which mesures the ratio
between traditional and nontraditional Coriolis terms. Experimental and numerical evidences of this tilted
vertical direction can be found in [12, 24, 25, 31].

2.1. Derivation of the QHQG model

In this section we present the derivation of the quasi-hydrostatic quasi-geostrophic (QHQG) equations. The
derivation follows classical principles (as in [2]): scaling, asymptotic expansion with respect to a small parameter,
equations satisfied at order zero and one. Here, the small parameter (denoted ε in the sequel) is the Rossby
number, so that we underline the effect of rotating terms. In order to account for the complete Coriolis force
(see e.g., [15] and references therein), we retain all the rotating terms in the original equations, including the
terms that are usually neglected in the so-called traditional approximation. This denomination was introduced
by Carl Eckart [9].
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2.1.1. Scaling parameters and scaled equations

We consider a three-dimensional domain with periodic boundary conditions in the horizontal directions, rigid
lid and flat bottom in the vertical. The governing non-hydrostatic equations, including the complete Coriolis
force, read:

Du

Dt
− fv + f∗w = −∂xϕ + Fu, (2.1a)

Dv

Dt
+ fu = −∂yϕ + Fv, (2.1b)

Dw

Dt
− f∗u +

g 	

	0
= −∂zϕ + Fw, (2.1c)

∂xu + ∂yv + ∂zw = 0, (2.1d)
D	

Dt
= F�. (2.1e)

Here (u, v, w) and 	 are respectively the three-dimensional velocity and density of the fluid, 	0 stands for the
averaged density of the fluid, and ϕ is the renormalized pressure, ϕ = p/	0. The scalars f = 2Ω sin(θ) and
f∗ = 2Ω cos(θ) are the Coriolis parameters where Ω stands for the angular velocity of the earth and θ is the
latitude; g is the universal gravity constant. The terms F• correspond to external forces (including diffusion
terms).

Equations (2.1a) to (2.1c) describe the conservation of momentum, where D/Dt is the material derivative
D/Dt = ∂t + u∂x + v∂y + w∂z , and equation (2.1d) corresponds to the conservation of mass. Finally, equa-
tion (2.1e) describes the advection of tracers (here the density 	). The density and the pressure may be classically
decomposed as

	(x, y, z, t) = ρ(z) + ρ(x, y, z, t)

and
ϕ(x, y, z, t) = ϕ(z) + φ(x, y, z, t),

where ρ and ϕ are the (known) background density and potential, depending only on the vertical variable. The
functions ρ and ϕ are in hydrostatic balance (∂zϕ = −ρg). We also denote by N2(z) = −∂zρ(z) the buoyancy
frequency, assuming that ∂zρ is negative and bounded away from zero.

Before going further in the derivation of the corresponding QG model, let us insist on the fact that we keep
in equations (2.1a) and (2.1c) the Coriolis terms f∗w and f∗u: we do not use the traditional approximation. We
will finally lead to a slightly modified QG model (see Eq. (2.16)). We think that it is a relevant modification,
since the QG approximation aims at underlying the Earth’s rotation effects: one should thus include every
rotation term in the primitive equations prior to an asymptotic expansion with respect to the Rossby number.

In the context of the β-plane approximation (see [8] for example), as suggested in [12] we have, with θ0 the
average latitude and Re the mean radius of the Earth:

f = f0 +
1

Re
2Ω cos θ0y, with f0 = 2Ω sin θ0,

f∗ = f∗
0 = 2Ω cos θ0.

We now introduce the following dimensionless variables, as it is classically done in QG modeling:

(x, y) = L (x′, y′), z = H z′, t =
L

U
t′,

u = U u′, v = U v′, w =
UH

L
w′,

ρ = Pρ′ and ϕ = HPgϕ′, ρ = �0f0UL
gH ρ′, φ = f0ULφ′.
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The Rossby number ε = U/f0L is the fundamental ordering parameter in the following asymptotic expansion.
A secondary ordering parameter is the scale ratio of ρ to 	: this ratio is assumed to be ε as usual for large scale
oceanography, that is4, we assume:

	0f0UL

gH
= Pε.

Finally, the density may be expressed in terms of nondimensionnal quantities:

	 = P
(
ρ′(z) + ερ′

)
,

as well as the Coriolis parameter:

f = f0(1 + εβ0y
′) with β0 =

2ΩL2 cos θ0

URe
·

We end this section with the non-hydrostatic scaled equations (we naturally drop the primes):

Du

Dt
−

(
1
ε

+ β0y

)
v +

λ

ε
w = −1

ε
∂xφ + ν1hΔhu + ν1z∂

2
zzu, (2.2a)

Dv

Dt
+

(
1
ε

+ β0y

)
u = −1

ε
∂yφ + ν1hΔhv + ν1z∂

2
zzv, (2.2b)

δ2 Dw

Dt
− λ

ε
u +

ρ

ε
= −1

ε
∂zφ + ν2hΔhw + ν2z∂

2
zzw, (2.2c)

∂xu + ∂yv + ∂zw = 0, (2.2d)
Dρ

Dt
+

w

ε
∂zρ = ν3hΔhρ + ν3z∂

2
zzρ, (2.2e)

where we recall that ε is the Rossby number (meant to go to zero), δ = H/L is the domain aspect ratio, and
λ = δ cot θ0. The operator Δh is the horizontal Laplacian. In those equations, we do not consider any external
forcing, except diffusion terms with kinematic viscosities (ν1•, ν2• > 0) and with eddy viscosities (ν3• > 0) that
are required for geophysical flows (see e.g. [7], Chap. 3, p. 39).

When we considered the scaling numbers introduced above, we have implicitly assumed that the leading term
at the left-hand-side of equation (2.1a) was fv, which means (when comparing the two Coriolis terms in this
equation) that δ cot θ0 should not be too large:

λ � 1. (2.3)

Fortunately, because the aspect ratio δ = H/L is rather small in large ocean models, the condition (2.3) is easily
satisfied.

Remark 2.1. Actually, the term δ2Dw/Dt could be set to zero in (2.2c) above with no modification in the
sequel: indeed the reader will see below that w vanishes at the main order, hence δ2Dw/Dt = O(ε) can be
neglected prior to the QG approximation.

The final model is thus called QHQG since the differences between the new QG model and the traditional
one rely only on the terms related to the Coriolis force.

The key point of the present work is to draw the reader’s attention on the fact that the ratio λ/ε = cot θ0 δ/ε
is not necessarily small compared to 1/ε, and that it may have some physical impact (see Sect. 2.4).

4This assumption correspond to a small Froude number, of order ε.
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2.1.2. Geostrophic balance

We now consider an asymptotic expansion of all variables with respect to the Rossby number: for every
unknown function γ, we write the formal asymptotic expansion

γ = γ(0) + εγ(1) + ε2γ(2) + . . .

where (γ(j))j≥0 behave as O(1) as ε goes to zero. Equations (2.2a)–(2.2c) give, keeping only the leading order
terms in ε:

− v(0) + λw(0) = −∂xφ(0), (2.4a)
u(0) = −∂yφ

(0), (2.4b)

−λu(0) + ρ(0) = −∂zφ
(0). (2.4c)

We complement this system with equation (2.2e) (written to the order zero and since ∂zρ never vanishes) which
leads to w(0) = 0.

Remark 2.2. An alternative way to obtain the main order of w is based on the incompressibility contition. It
reads ∂zw

(0) = −∂xu(0) − ∂yv(0) and this traditionally leads to w(0) = 0, thanks to equations (2.4a), (2.4b) and
boundary conditions on w (see [2]). Here, the incompressibility condition does not provide ∂zw

(0) = 0, but we
have, denoting ∂Z = ∂z + λ∂y :

∂Zw(0) = ∂zw
(0) + λ∂yw(0)

= −∂xu(0) − ∂yv(0) + λ∂yw(0)

= curl(∂yφ, ∂xφ) (2.5)
= 0.

Thanks to (2.5) and to homogeneous boundary conditions on w(0), we obtain again that w(0) = 0.

The geostrophic equations read:

− v(0) = −∂xφ(0), (2.6a)
u(0) = −∂yφ(0), (2.6b)

ρ(0) = −∂zφ
(0) − λ∂yφ(0) = −∂Zφ(0), (2.6c)

w(0) = 0. (2.6d)

2.1.3. Quasi-geostrophic equations

Now we need the first order equations in order to determine the evolution of φ(0). We denote by dg the
zero-order material derivative:

dg = ∂t + u(0)∂x + v(0)∂y.

The first order equations are:

dgu
(0) − β0yv(0) − v(1) + λw(1) = −∂xφ(1) + ν1hΔhu(0) + ν1z∂

2
zzu

(0), (2.7a)

dgv
(0) + β0yu(0) + u(1) = −∂yφ

(1) + ν1hΔhv(0) + ν1z∂
2
zzv

(0), (2.7b)

−λu(1) + ρ(1) = −∂zφ
(1), (2.7c)

∂xu(1) + ∂yv(1) + ∂zw
(1) = 0, (2.7d)

dgρ
(0) + w(1)∂zρ = ν3hΔhρ(0) + ν3z∂

2
zzρ

(0). (2.7e)
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We now take the curl of equations (2.7a) and (2.7b) to obtain, thanks to equation (2.7d)

dg

(
∂xv(0) − ∂yu(0)

)
− ∂zw

(1) − λ∂yw(1) + β0v
(0) = ν1hΔh

(
∂xv(0) − ∂yu(0)

)
+ ν1z∂

2
zz

(
∂xv(0) − ∂yu(0)

)
. (2.8)

We notice, as for the traditional QG equations, that β0v
(0) = dg(β0y). We thus try to express the quantity

−∂zw
(1) − λ∂yw(1) = −∂Zw(1) as dg(Γ ) plus viscous terms, where Γ is a function to be defined. To this aim,

we will extensively make use of equation (2.7e) that we reformulate:

w(1) = N−2
(
dgρ

(0) − ν3hΔhρ(0) − ν3z∂
2
zzρ

(0)
)

= dg

(
N−2ρ(0)

)
− ν3hN−2Δhρ(0) − ν3zN

−2∂2
zzρ

(0). (2.9)

Given (2.9), we may compute the required quantity

∂zw
(1) + λ∂yw(1) = ∂z

(
dg

(
N−2ρ(0)

))
+ λ∂y

(
dg

(
N−2ρ(0)

))

− ν3h(∂z + λ∂y)
(
N−2Δhρ(0)

)
− ν3z(∂z + λ∂y)

(
N−2∂2

zzρ
(0)

)
. (2.10)

We remark that for any function γ and any variable ∗ we have the identity

(dg(γ))∗ = dg (γ∗) + u
(0)
∗ ∂xγ + v

(0)
∗ ∂yγ,

so that we can write equation (2.10)

∂zw
(1) + λ∂yw(1) = dg

(
∂z

(
N−2ρ(0)

))
+ λdg

(
∂y

(
N−2ρ(0)

))

− ν3h(∂z + λ∂y)
(
N−2Δhρ(0)

)
− ν3z(∂z + λ∂y)

(
N−2∂2

zzρ
(0)

)
+ R, (2.11)

where the remainder R, according to the remark above, is

R = ∂zu
(0)∂x

(
N−2ρ(0)

)
+ ∂zv

(0)∂y

(
N−2ρ(0)

)
+ λ∂yu(0)∂x

(
N−2ρ(0)

)
+ λ∂yv(0)∂y

(
N−2ρ(0)

)

= ∂x

(
N−2ρ(0)

)(
∂zu

(0) + λ∂yu(0)
)

+ ∂y

(
N−2ρ(0)

)(
∂zv

(0) + λ∂yv(0)
)

.

Using equations (2.6a)–(2.6c) again, we have

R = N−2∂xρ(0)∂yρ(0) − N−2∂yρ(0)∂xρ(0) = 0,

which simplifies equation (2.11) as follows:

∂Zw(1) = ∂zw
(1) + λ∂yw(1) = dg

(
∂z

(
N−2ρ(0)

)
+ λ∂y

(
N−2ρ(0)

))

− ν3h(∂z + λ∂y)
(
N−2Δhρ(0)

)
− ν3z(∂z + λ∂y)

(
N−2∂2

zzρ
(0)

)
. (2.12)

Back to equation (2.8), we replace expression (2.12) and get:

dg

(
∂xv(0) − ∂yu(0) − ∂z

(
N−2ρ(0)

)
− λ∂y

(
N−2ρ(0)

)
+ β0y

)
= ν1hΔh

(
∂xv(0) − ∂yu(0)

)

+ ν1z∂
2
zz

(
∂xv(0) − ∂yu(0)

)
− ν3h(∂z + λ∂y)

(
N−2Δhρ(0)

)
− ν3z(∂z + λ∂y)

(
N−2∂2

zzρ
(0)

)
. (2.13)

Let us now rewrite equation (2.13), expressing everything in terms of φ(0). We have(
∂t − ∂yφ(0)∂x + ∂xφ(0)∂y

)
ζ = ν1hΔhΔhφ(0) + ν1z∂

2
zzΔhφ(0)

+ν3h(∂z + λ∂y)
(
N−2Δh(∂zφ

(0) + λ∂yφ(0))
)

+ ν3z(∂z + λ∂y)
(
N−2∂2

zz(∂zφ
(0) + λ∂yφ(0))

)
, (2.14)

ζ = Δhφ(0) + N−2 (∂z + λ∂y)2 φ(0) + ∂zN
−2 (∂z + λ∂y)φ(0) + β0y. (2.15)
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We could write this more compactly for Φ = φ(0) with ∂Z = ∂z + λ∂y and get the following viscous quasi-
hydrostatic quasi-geostrophic (QHQG) equation:

(∂t − ∂yΦ∂x + ∂xΦ∂y)
(
ΔhΦ + ∂Z

(
N−2∂ZΦ

)
+ β0y

)
=

ν1hΔhΔhΦ + ν1z∂
2
zzΔhΦ + ν3h∂Z

(
N−2Δh∂ZΦ

)
+ ν3z∂Z

(
N−2∂2

zz∂ZΦ
)
. (2.16)

One can thus easily recognize the traditional QG equation (see Eq. (2.23) in [2] without viscosity or equation (2.7)
in [1]), except that the differential operator ∂z is replaced by the tilted one ∂Z = ∂z + λ∂y, see [14]. We recall
here that λ = δ cot θ0 is proportional to the domain aspect ratio. In particular, we recover the traditional QG
equation when setting λ = 0 in equations (2.16). These equations are also called quasi-geostrophic equations
for slanted rotation in [11].

Equation (2.16) complemented by adapted initial conditions and, eventually, boundary conditions, constitutes
the QHQG model that we will study in the following.

2.2. Existence of solutions to the inviscid QHQG

In this section, we are interested in existence results for the inviscid quasi-hydrostatic quasi-geostrophic
equation (Eq. (2.16) with vanishing viscosities ν1h, ν1z and ν3h, ν3z):

(∂t − ∂yΦ∂x + ∂xΦ∂y)
(
ΔhΦ + ∂Z

(
N−2∂ZΦ

)
+ β0y

)
= 0. (2.17)

We consider a periodic domain in the horizontal variables with rigid boundaries at the top and bottom. More
precisely, we denote by B = Σ × (0, h) =

(− 1
2 , 1

2

) × (− 1
2 , 1

2

) × (0, h) the spatial domain where we establish
existence of solutions, with t ∈ [0, T ] (where T > 0) the time interval.

We assume the solutions to be horizontally periodic with period 1. The pressure potential Φ is defined by
the QHQG equation (2.17) up to a constant at each time; then we add the following condition:

∫
B Φ = 0. We

define uuu = (u(0), v(0)) the horizontal velocity at the leading order, we omit the (0) superscripts and rewrite the
QHQG equation together with the geostrophic equations as:

v = ∂xΦ, (2.18)
u = −∂yΦ, (2.19)
ρ = −∂zΦ − λ∂yΦ, (2.20)

ω := ∂xv − ∂yu − ∂z

(
N−2ρ

) − λ∂y

(
N−2ρ

)
in B, (2.21)

∂tω + uuu · ∇ω = −β0v in B × [0, T ], (2.22)

with the initial condition
ω(x, y, z, 0) = ω0(x, y, z), (2.23)

and the boundary conditions
ρ = 0 at z = 0 and z = h. (2.24)

Existence results are based on the following property:

Lemma 2.3. The partial differential operator L defined by

LΦ := ΔhΦ + ∂z

(
N−2 (∂zΦ + λ∂yΦ)

)
+ λ∂y

(
N−2 (∂zΦ + λ∂yΦ)

)
in B

is strictly elliptic.
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Proof. The function N−2(z) is assumed to be bounded away from 0 for z ∈ [0, h].
We expand L as:

LΦ = ∂2
xxΦ +

(
1 + λ2N−2

)
∂2

yyΦ + N−2∂2
zzΦ + 2λN−2∂2

yzΦ + λ∂z

(
N−2

)
∂yΦ + ∂z

(
N−2

)
∂zΦ

=
3∑

i=1

3∑
j=1

aij∂
2
i,jΦ +

3∑
i=1

bi∂iΦ,

where:

A = (aij)i,j=1,...,3 =

⎛
⎝1 0 0

0 1 + λ2N−2 λN−2

0 λN−2 N−2

⎞
⎠ , and b = (bi)i=1,...,3 =

(
0, λ∂z(N−2), ∂z(N−2)

)ᵀ
.

For all ξ = (ξ1, ξ2, ξ3)ᵀ, we have, for almost every z in [0, h]:

3∑
i=1

3∑
j=1

aijξiξj = ξ2
1 +

(
1 + λ2N−2

)
ξ2
2 + N−2ξ2

3 + 2λN−2ξ2ξ3

≥ ξ2
1 +

1
2
ξ2
2 +

1
2λ2 + N2

ξ2
3 (thanks to Young inequality)

≥ θ|ξ|2 with θ := min
(

1
2
,

1
2λ2 + N2

)
> 0. �

The condition θ > 0 is satisfied as soon as λ > 0. In the case where λ = 0 (traditional equation), one needs
to assume that N−2 is bounded away from zero (see [2]).

Lemma 2.3 generalizes the ellipticity result of [2] for any λ ∈ R and we can now obtain the same exis-
tence results. Indeed, system (2.18)–(2.24) only differs from the corresponding system in [2] in equations (2.20)
and (2.21).

We first obtain the local existence of solutions:

Theorem 2.4 (Short-time existence of solutions to the QHQG model). If the initial vorticity ω0 is in Hs(B)
for some s ≥ 3 with |ω0|s ≤ M , then there exists a time T ∗ > 0 and a solution ω in C ([0, T ∗], Hs(B)) to the
QHQG model (2.18)–(2.24), where T ∗ depends only on M, B, λ and β0. The vorticity ω satisfies the estimate
‖ω‖s,T∗ ≤ 2M .

Proof. The proof follows the lines of [2], considering an iterative process:

• starting from ξ0(x, y, z, t) = ω0(x, y, z) given,
• for k ≥ 0 compute Φk thanks to the relation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2
xxΦk + ∂2

yyΦ
k + ∂z

(
∂zΦ

k + λ∂yΦk

N2

)
+

λ

N2
∂y

(
∂zΦ

k + λ∂yΦk
)

= ξk in B,

∂zΦ
k + λ∂yΦk = 0 for z = 0 and z = h,∫

B

Φk = 0,

(2.25)

• then set uk = −∂yΦ
k and vk = ∂xΦk,

• for every z ∈ [0, h], compute ξk+1 solution of

∂tξ
k+1 +

(
uk, vk

)ᵀ · ∇ξk+1 = −β0v
k,

with ξk+1(t = 0) = ω0, with periodic boundary conditions in x and y.
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The elliptic result (Lem. 2.3) still gives the estimate:

|Φk|s+2 ≤ C0|ξk|s with C0 = C0(B, N(z), λ) > 0

such that, equations (2.18), (2.19) and (2.22) being unchanged, the short-time existence of the kth vorticity
iterate ξk follows, as well as the upper bound on its Hs norm.

The end of the proof, for the convergence of the iterates {ξk(t)}k≥0, is not modified by the λ coefficient. �

We are also able to adapt the proof of global solutions for the QG model by [2] to get:

Theorem 2.5 (Global existence of solutions to the QHQG model). If ω0 is in Hs(B) for some s ≥ 3, then
given any time T > 0, there exists a solution ω in C ([0, T ], Hs(B)) to the QHQG model (2.18)–(2.24).

Proof. From Lemma 2.3, relations (2.18)–(2.20) and from
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2
xxΦ + ∂2

yyΦ + ∂z

(
∂zΦ + λ∂yΦ

N2

)
+

λ

N2
∂y(∂zΦ + λ∂yΦ) = ω in B,

∂zΦ + λ∂yΦ = 0 for z = 0 and z = h,∫
B

Φ = 0,

we have the elliptic estimate:
|uuu|s+1 + |ρ|s+1 ≤ C|ω|s,

such that we also have a global estimate on the QHQG vorticity ω of the form

|ω(t)|s ≤ K(t) ∀t ∈ [0, T ],

where the function K only depends on the Hs norm of the initial condition ω0. Thanks to the short-time
existence, the global existence can be proved, using the global bound

|ω(t)|s ≤ max
t∈[0,T ]

K(t) ∀t ∈ [0, T ]

to reach any time T thanks to an iterative process. �

2.3. Existence of solutions to the viscous QHQG

As in Section 2.2, we are interested here in adapting existence results of [1] to the QHQG equation (2.16).
Let us consider the QHQG equation with vanishing vertical viscosities ν1z and ν3z:

(∂t − ∂yΦ∂x + ∂xΦ∂y)
(
ΔhΦ + ∂Z

(
N−2∂ZΦ

)
+ β0y

)
= ν1hΔhΔhΦ + ν3h∂Z

(
N−2Δh∂ZΦ

)
, (2.26)

in the spatial domain B = (0, 1) × (0, 1) × (0, h), for t ∈ [0, T ] with the following boundary conditions at the
top and at the bottom:

∂zΦ = 0 for z = 0 and z = h, (2.27)

and with periodic boundary conditions (with period 1) for the horizontal variables. The initial condition on the
vorticity ω given by ω = ΔhΦ + ∂Z

(
N−2∂ZΦ

)
is:

ω(x, y, z, 0) = ωI(x, y, z), (2.28)

where ωI is periodic with period 1 in the horizontal directions.
In the following we denote by f ∈ Cn(Ω) a function that is 1-periodic in x and y and with all its derivatives

(with respect to variables in Ω) ∂�•f continuous on Ω for 0 ≤ � ≤ n.
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Theorem 2.6 (Existence of solution to the dissipative QHQG model). If N(z) is continuous and continuously
differentiable on [0, h], if ωI and its horizontal derivatives (up to the second order) are in Cγ(B), then there
exists a unique solution (Φ∗, ω∗) to the QHQG problem (2.26)–(2.28) in the time interval [0, T ∗], where T ∗ is
inversely proportional to the β0 parameter, with:

• Φ∗ has all its spatial partial derivatives ∂�
•Φ

∗ (for 0 ≤ � ≤ 2) in C0(B × [0, T ∗]) and its second order spatial
derivatives ∂2

•Φ∗ in Cγ(B) uniformly in t ∈ [0, T ∗],
• ω∗, its horizontal derivatives (up to the second order) and ∂tω

∗ are in C0(B×[0, T ∗]) and in Cγ(B) uniformly
in t ∈ [0, T ∗].

Proof. The proof is exactly the one of [1], based on a Schauder fixed point for the existence and energy estimates
for the uniqueness. As in Section 2.2, the only novelty for the QHQG model (2.26)–(2.28) is the ∂Z term in the
vorticity instead of ∂z: Lemma 2.3 ensures the ellipticity of the corresponding operator and the rest of the proof
remains unchanged. We refer to [1] for details and for the expression of T ∗ in terms of β. �

2.4. Simple physical properties of the QHQG model

We detail here some basic physical properties that can be obtained for the QHQG model and we perform
comparisons with the well-known QG system.

We recall the QHQG equation (2.16):

(∂t − ∂yΦ∂x + ∂xΦ∂y)
(
ΔhΦ + ∂Z

(
N−2∂ZΦ

)
+ β0y

)
=

ν1hΔhΔhΦ + ν1z∂
2
zzΔhΦ + ν3h∂Z

(
N−2Δh∂ZΦ

)
+ ν3z∂Z

(
N−2∂2

zz∂ZΦ
)
,

where ∂Z = ∂z + λ∂y and λ = δ cot θ0.

2.4.1. Coordinate transformation

We define a coordinate transform from (x, t) = (x, y, z, t) to (X, T ) = (X, Y, Z, T ) by

X = x, Y = y − λz, Z = z, T = t. (2.29)

The transformed QHQG system is isomorphic to (2.16) because (∂t − ∂yΦ∂x + ∂xΦ∂y) and Δh, have identical
functional forms in the transformed coordinates; N2(z) = N2(Z); and βy = β(Y + λZ) can be replaced by βY
because (∂t − ∂yΦ∂x + ∂xΦ∂y) (λZ) = 0. Thus, all QG solutions Φ(x, t) are also QHQG solutions Φ(X, T ) if the
initial and boundary conditions are consistent. Initial conditions are equivalently specified at t = 0 or T = 0.
Planar vertical boundary surfaces at z = z0 are also planar at Z = z0. The same is true in x and X . Only in
y is a planar surface in y no longer planar in Y ; therefore, the simple equivalence is for solutions that have an
unbounded y domain, or are y-periodic, or decay away in y before the boundary.

2.4.2. Separable solutions and vertical modes

In the inviscid case (see Eq. (2.17)), QHQG has vertically separable solutions when linearized by neglecting
(∂xΦ∂y − ∂yΦ∂x)

(
ΔhΦ + ∂Z

(
N−2∂ZΦ

))
, even for general N(z), Φ = Π(X, Y, T )F (Z). (QG has an analogous

property.) Such QHQG solutions have a vertically upward phase tilt in the (y, z) plane with a slope of dz/dy =
λ−1 relative to the z axis. This direction is aligned with the full rotation vector. Many phenomena influenced
by the non-traditional approximation (e.g., convection and centrifugal instability as reviewed in [12]) are known
to exhibit this type of phase tilt. If we assume constant density at the vertical boundaries, F is determined by
the 1D eigenvalue problem,

∂Z(N−2∂ZF ) + R−2F = 0 , ∂ZF = 0 at Z = Z0, Z1 . (2.30)

The eigenvalue R is the horizontal radius of deformation. With N constant, the eigenmodes F are cosine
functions in Z.
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Figure 1. Values of ρk,l,m(λ) for several values of m. The main differences can be seen with
m = 0. Other values of k, l, m (in particular with m > 0) do not bring any additional in-
formation. The computations are made with a typical value of the Brunt–Väisälä frequency
N = 0.01.

2.4.3. Thermal wind balance

The geostrophic equations (2.6a)–(2.6c) have a steady solution for a zonal flow. This can be expressed as
u = U(Y, Z), 	 = − ∫ Z

0
N2(Z ′) dZ ′ + B(Y, Z) with ∂ZU = −∂Y B, which is thermal wind balance.

2.4.4. Rossby wave modes

One class of simple solutions is Rossby wave modes. They satisfy a linearized PDE usually justified by an
assumption of small amplitude flow,

∂t

(
ΔhΦ + (∂z + λ∂y)

(
N−2(∂z + λ∂y)Φ

))
+ β∂xΦ = 0. (2.31)

With constant N in either a vertically bounded or unbounded domain, eigenmodes are

Φ ∝ ei(kx+ly+mz−ωt), (2.32)

with a dispersion relation,

ω =
−βk

K2 , K2 = k2 + l2 +
1

N2 (m + λl)2. (2.33)

We can equivalently write this as
Φ ∝ ei(kX+lY +MZ−ωT ), (2.34)

with M = m + λl.

Let us define the function

ρk,l,m(λ) =
ω(λ)
ω(0)

,

that will evidence the difference between QG and QHQG models. We plot in Figure 1 above the behavior of
ρk,l,m(λ) as a function of λ for various values of k, l, m.

Naturally, for θ0 = 0 we have a singularity (λ = +∞) and ρ(λ) goes to zero. This advocates for the fact that
QHQG and QG have drastically different behaviors “at the equator”, where QG is known to be irrelevant.
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The results in Figure 1 show that the barotropic mode m = 0 has a significantly lower frequency even for
non-infinite (reasonable) values of λ. Indeed, assuming l > 0 (otherwise ρ = 1) a difference of 10% can be seen
with λ = 4 × 10−3 with (k, l, m) = (0, 1, 0), which corresponds (with δ = 10−3 which is a good typical value in
the North Atlantic ocean) to θ0 = 14◦. This is not that close from the equator. For the mode (k, l, m) = (1, 1, 0)
the 10% margin leads to θ0 = 11◦ (λ = 5 × 10−3).

Even if this 10% difference cannot be seen for m > 0 (see Fig. 1), the barotropic mode is the more energetic
one and this is another reason to claim that QH modeling should be used as much as possible.

2.4.5. Vortex solutions

A simple vortex solution is a nonlinear stationary state when β = 0 and N is constant. In QG this occurs
for any axisymmetric profile, Φ(r, z), where r =

√
x2 + y2 is the radial coordinate, which is sufficient to make

(∂xΦ∂y − ∂yΦ∂x)
(
ΔhΦ + ∂z

(
N−2∂zΦ

))
= 0 even when the arguments have large amplitude. Physical interest

usually lies in profiles that are localized in r, e.g., a monopole with Φ(r) decaying away from a central extremum.
In QHQG nonlinear stationary solutions exist for any profile Φ(R, Z), where R2 = X2 + Y 2. Thus, QH vortices
are meridionally tilted rather than verically aligned. This tilted structure was previously proposed for Meddy
vortices by [23].

2.4.6. Fourier-space estimates for non-traditional effects

Assuming a wavenumber-space characterization of the solution, as commonly done for turbulent flows, in
terms of vertical and horizontal wavenumbers, kv and kh, or equivalently local values of H and L, we can ask
when the λ value is not small.

In QG the common view (sometimes called Charney’s stretched isotropy) is that the Burger number, Bu =
NH/2ΩL = kh/(2Ωkv/N), is order one while 2Ω/N is small. If H/L ∼ 2Ω/N 
 1, then λ ∼ (2Ω/N) cot θ0,
which will be small except when θ0 is very close to the Equator.

Alternatively, if we consider flow patterns with 2Ωkv/Nkh ∼ r 
 1, then λ ∼ (2Ω/Nr) cot θ0. For small
enough r, λ need not be small, and the QH correction to QG will be important. This happens when the aspect
ratio H/L is large, the stratification is weak, and/or θ0 is small. Large aspect ratio can be described from the
QG perspective as atypically “tall” flows.

3. Place of the nontraditional models

The objective of this section is to show that the quasi-hydrostatic quasi-geostrophic equation (2.16) is an in-
termediate model between the non-hydrostatic equations and the usual (traditional) quasi-geostrophic equation,
namely equation (2.16) with λ = 0 (or equivalently Z = z).

3.1. Hierarchy of models

We can represent these models on the diagram of Figure 2.
The convergence of NH towards QHQG (see 1© in Fig. 2) is proved in [11]: based on techniques developed

in [10], the authors prove that the solution of NH weakly converges, when ε tends to zero, to a limit that satisfies
QHQG. The convergence cannot be in the strong sense due to fast oscillations that can appear in NH and that
disappear in QHQG.

The convergence of NHT (that are exactly NH with λ = 0) to QG (that is 2© in Fig. 2) have been studied in
several papers; let us mention [2] in a periodic domain in the horizontal variables, with regular initial data, or
in [5] in a three dimensional periodic domain, for ill prepared data.

In the following of this section, we are interested in the right part 3© of the diagram 2: we prove that a
solution of QHQG converges to a solution of QG when δ (and consequently λ) tends to zero.



ON NONTRADITIONAL QUASI-GEOSTROPHIC EQUATIONS 439

equations

equations

equations

equations

NH

GQTHN

QHQG

3 λ = 0

ε → 0

ε → 0

λ = 0

1

2

0

Figure 2. Non-hydrostatic equations and quasi-geostrophic equations: models with and with-
out nontraditional terms. NH: non-hydrostatic equations, see (2.1); NHT: non-hydrostatic tra-
ditional equations, see (2.1) without the f∗ terms; QHQG: quasi-hydrostatic quasi-geostro-
phic equation, see (2.16); QG: (traditional) quasi-geostrophic equation, see (2.16) with
λ(=δ cot θ0) = 0.

3.2. Convergence as δ (or λ) tends to zero

We are interested in the limit when the aspect ratio δ tends to zero, which means that λ also tends to zero.
More precisely, we prove that the solution of the quasi-hydrostatic quasi-geostrophic model (2.16) converges
to its corresponding hydrostatic model when the aspect ratio δ tends to 0, that is, as λ = δ cot θ0, when the
nontraditional Coriolis parameter λ tends to 0. We assume ν1z = 0 and ν3z of order ε to be consistent with
boundary conditions (see [17]).

Let us denote by φλ the solution of the nontraditional (quasi-hydrostatic) quasi-geostrophic model for a
fixed λ:

(
∂t − ∂yφλ∂x + ∂xφλ∂y

) (
Δhφλ + ∂Z

(
N−2∂Zφλ

)
+ β0y

)
=

ν1hΔhΔhφλ + ν3h∂Z

(
N−2Δh∂Zφλ

)
+ ν3z∂Z

(
N−2∂2

zz∂Zφλ
)
. (3.1)

in the domain Ω (where ∂Z = ∂z + λ∂y), with periodic conditions in x and y, and verifying ∂Zφλ = 0 at top
(z = h) and bottom (z = 0). At t = 0, the function is given by φλ

0 . We assume the data to be well-prepared,
that is φλ

0 → φ0 when λ → 0.
We want to prove that φλ converges when λ → 0 towards a function φ, solution of the following traditional

(hydrostatic) quasi-geostrophic model:

(
∂t − ∂yφ(G)∂x + ∂xφ(G)∂y

) (
Δhφ(G) + N−2∂2

zzφ
(G) + ∂zN

−2∂zφ
(G) + β0y

)

= ν1hΔhΔhφ(G) + ν3h∂z

(
N−2Δh∂zφ

(G)
)

+ ν3z∂z

(
N−2∂3

zzzφ
(G)

)
, (3.2)

with ∂zφ
(G) = 0 on the top and bottom, and φ(G)(t = 0) = φ0.

3.2.1. A priori estimates for φλ

Let us multiply equation (3.1) by φλ and integrate over the periodic domain (in x and y) Ω:
∫

Ω

∂t

(
Δhφλ+∂Z

(
N−2∂Zφλ

))
φλ =ν1h

∫
Ω

ΔhΔhφλφλ+ν3h

∫
Ω

∂Z

(
N−2Δh∂Zφλ

)
φλ+ν3z

∫
Ω

∂Z

(
N−2∂2

zz∂Zφλ
)
φλ
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(due to the properties of the jacobian), which leads to:

−1
2

d
dt

∥∥∇hφλ
∥∥2

2
− 1

2
d
dt

∥∥N−1∂Zφλ
∥∥2

2
= ν1h

∥∥Δhφλ
∥∥2

2
+ ν3h

∥∥N−1∇h∂Zφλ
∥∥2

2
+ ν3z

∥∥N−1∂zZφλ
∥∥2

2

+
∫

Ω

∂zN
−2∂zZφλ∂Zφλ,

that reads:

∇hφλ is bounded in L∞(0, T, L2(Ω)) if, ∀λ > 0,
(∇hφλ

)
(t = 0) is in L2(Ω),

∂Zφλ is bounded in L∞(0, T, L2(Ω)) if, ∀λ > 0,
(
∂Zφλ

)
(t = 0) is in L2(Ω),

and

Δhφλ is bounded in L2(0, T, L2(Ω)),
∇∂Zφλ is bounded in L2(0, T, L2(Ω)),

as the Brunt–Väisälä frequency N(z) is bounded (from above and away from zero).
Let us also multiply equation (3.1) by Δhφλ + ∂Z

(
N−2∂Zφλ

)
and integrate over Ω. We obtain:

∫
Ω

(
∂t

(
Δhφλ + ∂Z

(
N−2∂Zφλ

))
+ β0∂xφλ

) (
Δhφλ + ∂Z

(
N−2∂Zφλ

))

= ν1h

∫
Ω

ΔhΔhφλ
(
Δhφλ + ∂Z

(
N−2∂Zφλ

))
+ ν3h

∫
Ω

∂Z

(
N−2Δh∂Zφλ

) (
Δhφλ + ∂Z

(
N−2∂Zφλ

))

+ ν3z

∫
Ω

∂z

(
N−2∂2

zz∂Zφλ
) (

Δhφλ + ∂Z

(
N−2∂Zφλ

))
,

that gives:

1
2

d
dt

∥∥Δhφλ + ∂Z

(
N−2∂Zφλ

)∥∥2

2
+ ν1h

∥∥∇hΔhφλ
∥∥2

2
+ (ν1h + ν3h)

∥∥N−1Δh∂Zφλ
∥∥2

2

+ ν3z

∥∥N−1∇h∂2
zZφλ

∥∥2

2
+ ν3h

∥∥∂Z(N−2∇h∂Zφλ)
∥∥2

2
+ ν3z

∥∥∂Z

(
N−2∂zZ∂λ

)∥∥2

2

= −β0

∫
Ω

∂xφλ
(
Δhφλ + ∂Z

(
N−2∂Zφλ

))
+ ν3z

∫
Ω

∂zN
−2∂2

zZφλΔh∂Zφλ.

The r.h.s. can be bounded by C1 + C2

∥∥Δhφλ + ∂Z

(
N−2∂Zφλ

)∥∥2

2
+ C3

∥∥Δh∂Zφλ
∥∥2

2
using the previous results,

where the Ci are constants, leading to:

Δhφλ is bounded in L∞(0, T, L2(Ω)) if, ∀λ > 0,
(
Δhφλ

)
(t = 0) is in L2(Ω),

∂Z

(
N−2∂Zφλ

)
is bounded in L∞(0, T, L2(Ω)) if, ∀λ > 0,

(
∂Z

(
N−2∂Zφλ

))
(t = 0) is in L2(Ω),

N−1∂Z∇hφλ is bounded in L∞(0, T, L2(Ω)) if, ∀λ > 0,
(
N−1∂Z∇hφλ

)
(t = 0) is in L2(Ω),

and

∇hΔhφλ is bounded in L2(0, T, L2(Ω)),
∂ZΔhφλ is bounded in L2(0, T, L2(Ω)),

∂Z

(
N−2∇∂Zφλ

)
is bounded in L2(0, T, L2(Ω)),

∂2
zZ∇hφλ is bounded in L2(0, T, L2(Ω)).

From equality (3.1), thanks to the previous properties, we also have:

∂t

(
Δhφλ + ∂Z

(
N−2∂Zφλ

))
is bounded in L2(0, T, H−1(Ω)).
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3.2.2. Convergence when λ → 0.

From the previous results, the gradient of φλ is in L∞(0, T, L2(Ω)), so with Sobolev embeddings, φλ strongly
converges to a limit denoted φ in L∞(0, T, Lp(Ω)), with p < 6. Let us prove that φ satisfies the traditional
quasi-geostrophic equation (3.2).

We just proved that ∂t

(
Δhφλ + ∂Z

(
N−2∂Zφλ

))
is bounded in L2(0, T, H−1(Ω)). With the previous re-

sults, we also have ∇ (
Δhφλ + ∂Z

(
N−2∂Zφλ

))
in L2(0, T, L2(Ω)): thanks to Aubin–Lions theorem Δhφλ +

∂Z

(
N−2∂Zφλ

)
strongly converges towards Δhφ+∂z

(
N−2∂zφ

)
in C0(0, T, L2(Ω)) (we recall that ∂Z = ∂z +λ∂y).

So we can pass to the limit in the jacobian thanks to the strong convergence, the other terms do not bring any
difficulty.

Theorem 3.1. Let φλ be a sequence of weak solutions of the nontraditional quasi-geostrophic equation (3.1)
with initial data φλ(t = 0) = φλ

0 satisfying φλ
0 → φ0 in L1(Ω) with, for all λ > 0,

∇φλ
0 ∈ L2(Ω), Δφλ

0 ∈ L2(Ω), and ∂Zφλ
0 ∈ L2(Ω).

Then, up to a subsequence, φλ strongly converges in L∞(0, T, Lp(Ω)), with p < 6 towards φ, weak solution of
the quasi-geostrophic equation (3.2).

4. Conclusion

In this work we have shown that results of the reference paper [2] could be extended to quasi-hydrostatic
modeling, leading to the QHQG equations (see also slanted or tilted models in [11, 14]) with few adjustments.
To the authors’ opinion, this should advocate for the use of QHQG modeling rather than QG when the nontra-
ditional parameter λ is not small (in particular close to the equator). However, the convergence studies confirm
that QG is a relevant approximation of QHQG for small λ configurations. A numerical study to quantify more
precisely the effect of the traditional approximation could be performed but it is beyond the scope of this work.
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