This work deals with a nonlinear nonstationary semilinear singularly perturbed convection-diffusion problem. We discretize this problem by the discontinuous Galerkin method in space and by the midpoint rule, BDF2 and quadrature variant of discontinuous Galerkin in time. We present a priori error estimates for these three schemes that are uniform with respect to the diffusion coefficient going to zero and valid even in the purely convective case.
Accepté le :
DOI : 10.1051/m2an/2016035
Mots clés : Discontinuous Galerkin method, a priori error estimates, nonlinear convection-diffusion equation, diffusion-uniform error estimates
@article{M2AN_2017__51_2_537_0, author = {Ku\v{c}era, V\'aclav and Vlas\'ak, Miloslav}, title = {A priori diffusion-uniform error estimates for nonlinear singularly perturbed problems: {BDF2,} midpoint and time {DG}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {537--563}, publisher = {EDP-Sciences}, volume = {51}, number = {2}, year = {2017}, doi = {10.1051/m2an/2016035}, mrnumber = {3626410}, zbl = {1372.65257}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016035/} }
TY - JOUR AU - Kučera, Václav AU - Vlasák, Miloslav TI - A priori diffusion-uniform error estimates for nonlinear singularly perturbed problems: BDF2, midpoint and time DG JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 537 EP - 563 VL - 51 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016035/ DO - 10.1051/m2an/2016035 LA - en ID - M2AN_2017__51_2_537_0 ER -
%0 Journal Article %A Kučera, Václav %A Vlasák, Miloslav %T A priori diffusion-uniform error estimates for nonlinear singularly perturbed problems: BDF2, midpoint and time DG %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 537-563 %V 51 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016035/ %R 10.1051/m2an/2016035 %G en %F M2AN_2017__51_2_537_0
Kučera, Václav; Vlasák, Miloslav. A priori diffusion-uniform error estimates for nonlinear singularly perturbed problems: BDF2, midpoint and time DG. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 537-563. doi : 10.1051/m2an/2016035. http://www.numdam.org/articles/10.1051/m2an/2016035/
Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: M2AN 38 (2004) 261–289. | DOI | Numdam | MR | Zbl
and ,T. Barth and M. Ohlberger, Finite Volume Methods: Foundation and Analysis. Vol. 1 of Encyclopedia of Computational Mechanics. John Wiley & Sons, Chichester, New York, Brisbane (2004) 439–474.
High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations. J. Comput. Phys. 138 (1997) 251–285. | DOI | MR | Zbl
and ,P.G. Ciarlet, The finite element methods for elliptic problems. North-Holland, Amsterdam (1978). | MR | Zbl
The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. | DOI | MR | Zbl
and ,V. Dolejší and M. Feistauer, Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow. Springer (2015). | MR
Analysis of a BDF-DG scheme for nonlinear convection-diffusion problems. Numer. Math. 110 (2008) 405–447. | DOI | MR | Zbl
and ,Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 194 (2005) 2709–2733. | DOI | MR | Zbl
, and ,Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 196 (2007) 2813–2827. | DOI | MR | Zbl
, and ,An optimal -error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem. IMA J. Numer. Anal. 28 (2008) 496–521. | DOI | MR | Zbl
, , and ,On a robust discontinuous Galerkin technique for the solution of compressible flow. J. Comput. Phys. 224 (2007) 208–221. | DOI | MR | Zbl
and ,Space-time discontinuous Galerkin method for solving nonstationary convection-diffusion-reaction problems. Appl. Math. 52 (2007) 197–233. | DOI | MR | Zbl
, and ,An a posteriori error estimate for hp-adaptive DG methods for convection-diffusion problems on anisotropically refined meshes. Comp. Math. Appl. 67 (2014) 869–887. | DOI | MR | Zbl
, and ,E. Hairer, S.P. Norsett and G. Wanner, Solving ordinary differential equations I, Nonstiff problems. Springer Verlag (2000). | MR | Zbl
Optimal -error Estimates for the DG Method Applied to Nonlinear Convection-Diffusion Problems with Nonlinear Diffusion. Numer. Func. Anal. Opt. 31 (2010) 285–312. | DOI | MR | Zbl
,On diffusion-uniform error estimates for the DG method applied to singularly perturbed problems. IMA J. Numer. Anal. 32 (2014) 820–861. | MR | Zbl
,Finite element error estimates for nonlinear convective problems. J. Numer. Math. 24 (2016) 143–165. | DOI | MR | Zbl
,Riemann solvers, the entropy condition, and difference approximations. SIAM. J. Numer. Anal. 21 (1984) 217–235. | DOI | MR | Zbl
,W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA–UR–73–479, Los Alamos Scientific Laboratory (1973).
Optimal spatial error estimates for DG time discretizations. J. Numer. Math. 21 (2013) 201–230. | DOI | MR | Zbl
,An optimal uniform a priori error estimate for an unsteady singularly perturbed problem. Int. J. Numer. Anal. Model. 11 (2014) 24–33. | MR | Zbl
and ,A priori error estimates of an extrapolated space-time discontinuous Galerkin method for nonlinear convection-diffusion problems. Numer. Methods Partial Differ. Eqs. 27 (2011) 1456–1482. | DOI | MR | Zbl
, and ,E. Zeidler, Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators. Springer, Heidelberg (1986). | Zbl
Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws. SIAM J. Numer. Anal. 44 (2006) 1703–1720. | DOI | MR | Zbl
and ,Cité par Sources :