Analysis of a dynamic viscoelastic-viscoplastic piezoelectric contact problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 565-586.

In this paper, we study, from both variational and numerical points of view, a dynamic contact problem between a viscoelastic-viscoplastic piezoelectric body and a deformable obstacle. The contact is modelled using the classical normal compliance contact condition. The variational formulation is written as a nonlinear ordinary differential equation for the stress field, a nonlinear hyperbolic variational equation for the displacement field and a linear variational equation for the electric potential field. An existence and uniqueness result is proved using Gronwall’s lemma, adequate auxiliary problems and fixed-point arguments. Then, fully discrete approximations are introduced using an Euler scheme and the finite element method, for which some a priori error estimates are derived, leading to the linear convergence of the algorithm under suitable additional regularity conditions. Finally, some two-dimensional numerical simulations are presented to show the accuracy of the algorithm and the behaviour of the solution.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016027
Classification : 65M12, 65M15, 65M25, 65M60
Mots clés : Viscoelasticity, viscoplasticity, piezoelectricity, existence and uniqueness, a priori error estimates, numerical simulations
Campo, Marco 1 ; Fernández, Jose R. 2 ; Rodríguez-Arós, Ángel D. 3 ; Rodríguez, José M. 3

1 Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de España s/n, 36920 Marín, Spain.
2 Departamento de Matemática Aplicada I, Universidade de Vigo, Escola de Enxeñería de Telecomunicación, Campus As Lagoas Marcosende s/n, 36310 Vigo, Spain.
3 Departamento de Métodos Matemáticos e Representación, Universidade de A Coruña, A Coruña, Spain.
@article{M2AN_2017__51_2_565_0,
     author = {Campo, Marco and Fern\'andez, Jose R. and Rodr{\'\i}guez-Ar\'os, \'Angel D. and Rodr{\'\i}guez, Jos\'e M.},
     title = {Analysis of a dynamic viscoelastic-viscoplastic piezoelectric contact problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {565--586},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {2},
     year = {2017},
     doi = {10.1051/m2an/2016027},
     mrnumber = {3626411},
     zbl = {1398.74033},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016027/}
}
TY  - JOUR
AU  - Campo, Marco
AU  - Fernández, Jose R.
AU  - Rodríguez-Arós, Ángel D.
AU  - Rodríguez, José M.
TI  - Analysis of a dynamic viscoelastic-viscoplastic piezoelectric contact problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 565
EP  - 586
VL  - 51
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016027/
DO  - 10.1051/m2an/2016027
LA  - en
ID  - M2AN_2017__51_2_565_0
ER  - 
%0 Journal Article
%A Campo, Marco
%A Fernández, Jose R.
%A Rodríguez-Arós, Ángel D.
%A Rodríguez, José M.
%T Analysis of a dynamic viscoelastic-viscoplastic piezoelectric contact problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 565-586
%V 51
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016027/
%R 10.1051/m2an/2016027
%G en
%F M2AN_2017__51_2_565_0
Campo, Marco; Fernández, Jose R.; Rodríguez-Arós, Ángel D.; Rodríguez, José M. Analysis of a dynamic viscoelastic-viscoplastic piezoelectric contact problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 565-586. doi : 10.1051/m2an/2016027. http://www.numdam.org/articles/10.1051/m2an/2016027/

J. Ahn, Thick obstacle problems with dynamic adhesive contact. ESAIM: M2AN 42 (2008) 1021–1045. | DOI | Numdam | MR | Zbl

J. Ahn and D.E. Stewart, Dynamic frictionless contact in linear viscoelasticity. IMA J. Numer. Anal. 29 (2009) 43–71. | DOI | MR | Zbl

M. Attia, A. El-Shafei and F. Mahmoud, Analysis of nonlinear thermo-viscoelastic-viscoplastic contacts. Int. J. Engrg. Sci. 78 (2014) 1–17. | DOI | MR | Zbl

M. Barboteu and M. Sofonea, Modeling and analysis of the unilateral contact of a piezoelectric body with a conductive support. J. Math. Anal. Appl. 358 (2009) 110–124. | DOI | MR | Zbl

M. Barboteu, J.R. Fernández and T.-V. Hoarau-Mantel, A class of evolutionary variational inequalities with applications in viscoelasticity. Math. Models Methods Appl. Sci. 15 (2005) 1595–1617. | DOI | MR | Zbl

M. Barboteu, J.R. Fernández and Y. Ouafik, Numerical analysis of a frictionless viscoelastic piezoelectric contact problem. ESAIM: M2AN 42 (2008) 667–682. | DOI | Numdam | MR | Zbl

M. Barboteu, J.R. Fernández and R. Tarraf, Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity. Comput. Methods Appl. Mech. Engrg. 197 (2008) 3724–3732. | DOI | MR | Zbl

M. Barboteu, K. Bartosz, W. Han, and T. Janiczko, Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact. SIAM J. Numer. Anal. 53 (2015) 527–550. | DOI | MR | Zbl

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei. Bucharest-Noordhoff, Leyden (1976). | MR | Zbl

P. Barral, M.C. Naya-Riveiro and P. Quintela, Mathematical analysis of a viscoelastic problem with temperature-dependent coefficients. I. Existence and uniqueness. Math. Methods Appl. Sci. 30 (2007) 1545–1568. | DOI | MR | Zbl

R.C. Batra and J.S. Yang, Saint-Venant’s principle in linear piezoelectricity. J. Elasticity 38 (1995) 209–218. | DOI | MR | Zbl

A. Berti and M.G. Naso, Unilateral dynamic contact of two viscoelastic beams. Quart. Appl. Math. 69 (2011) 477–507. | DOI | MR | Zbl

M. Campo, J.R. Fernández, W. Han and M. Sofonea, A dynamic viscoelastic contact problem with normal compliance and damage. Finite Elem. Anal. Des. 42 (2005) 1–24. | DOI | MR

M. Campo, J.R. Fernández, K.L. Kuttler, M Shillor and J.M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage. Comput. Methods Appl. Mech. Engrg. 196 (2006) 476–488. | DOI | MR | Zbl

T.A. Carniel, P.A. Muñoz-Rojas and M. Vaz, A viscoelastic viscoplastic constitutive model including mechanical degradation: uniaxial transient finite element formulation at finite strains and application to space truss structures. Appl. Math. Model. 39 (2015) 1725–1739. | DOI | MR | Zbl

H. Chen, W. Xu, W. Wang, R. Wang, C. Shi, A nonlinear viscoelastic-plastic rheological model for rocks based on fractional derivative theory, Int. J. Mod. Phys. B 27 (2013) 1350149. | DOI | MR | Zbl

P.G. Ciarlet, Basic error estimates for elliptic problems. In: Vol. II of Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions. (1993) 17–351. | MR | Zbl

M. Cocou, Existence of solutions of a dynamic Signorini’s problem with nonlocal friction in viscoelasticity. Z. Angew. Math. Phys. 53 (2002) 1099–1109. | DOI | MR | Zbl

M. Cocu and J.M. Ricaud, Analysis of a class of implicit evolution inequalities associated to dynamic contact problems with friction. Int. J. Eng. Sci. 328 (2000) 1534–1549. | MR | Zbl

M. Cocou and G. Scarella, Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body. Z. Angew. Math. Phys. 57 (2006) 523–546. | DOI | MR | Zbl

M.I.M. Copetti and J.R. Fernández, A dynamic contact problem involving a Timoshenko beam model. Appl. Numer. Math. 63 (2013) 117–128. | DOI | MR | Zbl

Y. Dumont and L. Paoli, Dynamic contact of a beam against rigid obstacles: convergence of a velocity-based approximation and numerical results. Nonlinear Anal. Real World Appl. 22 (2015) 520-536. | DOI | MR | Zbl

G. Duvaut and J.L. Lions, Inequalities in mechanics and physics. Springer Verlag, Berlin (1976). | MR | Zbl

C. Eck, J. Jarusek and M. Krbec, Unilateral contact problems. Variational methods and existence theorems. Vol. 270 of Pure Appl. Math. Chapman & Hall/CRC, Boca Raton (2005). | MR | Zbl

M. Fabrizio and S. Chirita, Some qualitative results on the dynamic viscoelasticity of the Reissner-Mindlin plate model. Quart. J. Mech. Appl. Math. 57 (2004) 59–78. | DOI | MR | Zbl

J.R. Fernández and D. Santamarina, An a posteriori error analysis for dynamic viscoelastic problems. ESAIM: M2AN 45 (2011) 925-945. | DOI | Numdam | MR | Zbl

H. Ghoneim and Y. Chen, A viscoelastic-viscoplastic constitutive equation and its finite element implementation. Comput. Struct. 17 (1983) 499–509. | DOI | Zbl

F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl

D.W. Holmes and J.G. Loughran, Numerical aspects associated with the implementation of a finite strain, elasto-viscoelastic-viscoplastic constitutive theory in principal stretches. Int. J. Numer. Methods Engrg. 83 (2010) 366–402. | DOI | MR | Zbl

T. Ideka, Fundamentals of piezoelectricity. Oxford University Press. Oxford (1990).

I.R. Ionescu and Q.-L. Nguyen, Dynamic contact problems with slip dependent friction in viscoelasticity. Int. J. Appl. Math. Comput. Sci. 12 (2002) 71–80. | MR | Zbl

J. Jaruśek and C. Eck, Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions. Math. Models Methods Appl. Sci. 9 (1999) 11–34. | DOI | MR | Zbl

J.S. Kim and A.H. Muliana, A time-integration method for the viscoelastic-viscoplastic analyses of polymers and finite element implementation. Int. J. Numer. Methods Engrg. 79 (2009) 550–575. | DOI | MR | Zbl

A. Klarbring, A. Mikelić and M. Shillor, Frictional contact problems with normal compliance. Int. J. Engrg. Sci. 26 (1988) 811–832. | DOI | MR | Zbl

K.L. Kuttler, Dynamic friction contact problem with general normal and friction laws. Nonlinear Anal. 28 (1997) 559–575. | DOI | MR | Zbl

K.L. Kuttler and M. Shillor, Dynamic bilateral contact with discontinuous friction coefficient, Nonlinear Anal. 45 (2001) 309–327. | DOI | MR | Zbl

Y. Li and Z. Liu, Dynamic contact problem for viscoelastic piezoelectric materials with slip dependent friction. Nonlinear Anal. 71 (2009) 1414–1424. | DOI | MR | Zbl

X. Li and M. Wang, Hertzian contact of anisotropic piezoelectric bodies. J. Elasticity 84 (2006) 153–166. | DOI | MR | Zbl

F. Mahmoud, A. El-Shafei and M. Attia, Modeling of nonlinear viscoelastic-viscoplastic frictional contact problems. Int. J. Engrg. Sci. 74 (2014) 103–117. | DOI | MR | Zbl

J.A.C. Martins and J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. 11 (1987) 407–428. | DOI | MR | Zbl

S. Migórski, A. Ochal and M. Sofonea, Analysis of a dynamic contact problem for electro-viscoelastic cylinders. Nonlinear Anal. 73 (2010) 1221–1238. | DOI | MR | Zbl

B. Miled, I. Doghri and L. Delannay, Coupled viscoelastic-viscoplastic modeling of homogeneous and isotropic polymers: numerical algorithm and analytical solutions. Comput. Methods Appl. Mech. Engrg. 200 (2011) 3381–3394. | DOI | MR | Zbl

R.D. Mindlin, Polarisation gradient in elastic dielectrics. Int. J. Solids Struct. 4 (1968) 637–663. | DOI | Zbl

R.D. Mindlin, Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Internat. J. Solids Struct. 4 (1969) 1197–1213. | DOI

A. Morro and B. Straughan, A uniqueness theorem in the dynamical theory of piezoelectricity. Math. Methods Appl. Sci. 14 (1991) 295–299. | DOI | MR | Zbl

M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage. Vol. 276 of Pure Appl. Math. Chapman & Hall/CRC, Boca Raton (2006). | MR | Zbl

R.A. Toupin, Stress tensors in elastic dielectrics. Arch. Rational Mech. Anal. 5 (1960) 440–452. | DOI | MR | Zbl

R.A. Toupin, A dynamical theory of elastic dielectrics. Int. J. Engrg. Sci. 1 (1963) 101–126. | DOI | MR

Cité par Sources :