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Abstract. In this paper, we study, from both variational and numerical points of view, a dynamic
contact problem between a viscoelastic-viscoplastic piezoelectric body and a deformable obstacle. The
contact is modelled using the classical normal compliance contact condition. The variational formula-
tion is written as a nonlinear ordinary differential equation for the stress field, a nonlinear hyperbolic
variational equation for the displacement field and a linear variational equation for the electric po-
tential field. An existence and uniqueness result is proved using Gronwall’s lemma, adequate auxiliary
problems and fixed-point arguments. Then, fully discrete approximations are introduced using an Euler
scheme and the finite element method, for which some a priori error estimates are derived, leading to
the linear convergence of the algorithm under suitable additional regularity conditions. Finally, some
two-dimensional numerical simulations are presented to show the accuracy of the algorithm and the
behaviour of the solution.
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1. Introduction

Dynamic contact problems for viscoelastic materials have been studied in numerous publications. For instance,
we could refer the papers [12,18–20,31,32,35–37,40,41] where these problems were considered assuming different
friction laws and types of contact (deformable and rigid obstacles or bilateral contact, Coulomb’s friction law,
slip dependent friction, etc.). Moreover, the numerical approximation of these problems were also done, including
effects as the adhesion, the piezoelectricity or the damage (see, e.g., [1, 2, 7, 8, 13, 14, 21, 22, 26]).

These viscoelastic materials have been utilized in many engineering applications since they can be customized
to meet a desired performance while maintain low cost. An important issue concerning such materials is that
they may exhibit time-dependent and inelastic deformations. The viscoelastic strain component consists of
a recoverable-reversible part (elastic strain) and a recoverable-dissipative deformation part (inelastic strain).
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When an inelastic strain is assumed to depend only on the magnitude of the stress or strain, the term plastic
strain is used. When the plastic deformation also changes with time, like in the viscous component of the
viscoelastic part, the term viscoplastic strain is used. Therefore, a combined viscoelastic-viscoplastic constitutive
relationships should be considered. Recently, new models coupling both viscoplastic and viscoelastic effects have
been proposed (see, for instance, [3, 10, 15, 16, 27, 29, 33, 39, 42]).

Piezoelectricity is the ability of certain cristals, like the quartz (also ceramics (BaTiO3, KNbO3, LiNbO3,
PZT-5A, etc.) and even the human mandible or the human bone), to produce a voltage when they are subjected
to mechanical stress. This effect is characterized by the coupling between the mechanical and the electrical prop-
erties of the material. We note that this kind of materials appears usually in the industry as switches in radiotron-
ics, electroacoustics or measuring equipments. Since the first studies by Toupin [47, 48] and Mindlin [43, 44] a
large number of papers have been published dealing with related models (see, for instance, [11, 30, 45] and the
references cited therein). During the last ten years, numerous contact problems involving this piezoelectric effect
have been studied from the variational and numerical points of view (see, i.e., [4, 6, 7, 37, 38, 41]).

In this paper, the contact is assumed to be with a deformable obstacle and so, the classical normal compli-
ance contact condition is used ([34, 40]). Moreover, a viscoelastic-viscoplastic material is considered including,
for the sake of generality in the modelling, piezoelectric effects. Both variational and numerical analyses are
then performed, providing the existence of a unique weak solution to the continuous problem and an a priori
error analysis for the fully discrete approximations. Finally, some numerical simulations are presented in two-
dimensional examples to demonstrate the accuracy of the approximation and the behaviour of the solution.

The outline of this paper is as follows. In Section 2, we describe the mathematical problem and derive
its variational formulation. An existence and uniqueness result is proved in Section 3. Then, fully discrete
approximations are introduced in Section 4 by using the finite element method for the spatial approximation
and an Euler scheme for the discretization of the time derivatives. An error estimate result is proved from
which the linear convergence is deduced under suitable regularity assumptions. Finally, in Section 5 some two-
dimensional numerical examples are shown to demonstrate the accuracy of the algorithm and the behaviour of
the solution.

2. Mechanical problem and its variational formulation

Denote by S
d, d = 1, 2, 3, the space of second order symmetric tensors on R

d and by “·” and ‖ · ‖ the inner
product and the Euclidean norms on R

d and S
d.

Let Ω ⊂ R
d denote a domain occupied by a viscoelastic-viscoplastic piezoelectric body with a Lipschitz

boundary Γ = ∂Ω decomposed into three measurable parts ΓD, ΓF , ΓC , on one hand, and on two measurable
parts ΓA and ΓB , on the other hand, such that meas (ΓD) > 0, meas (ΓA) > 0, and ΓC ⊆ ΓB. Let [0, T ],
T > 0, be the time interval of interest. The body is being acted upon by a volume force with density f0, it is
clamped on ΓD and surface tractions with density fF act on ΓF . Moreover, an electrical potential is prescribed
on ΓA and electric charges are applied on ΓB . Finally, we assume that the body may come in contact with a
deformable obstacle on the boundary part ΓC , which is located, in its reference configuration, at a distance s,
measured along the outward unit normal vector ν = (νi)d

i=1.
Let x ∈ Ω and t ∈ [0, T ] be the spatial and time variables, respectively. In order to simplify the writing, some

times we do not indicate the dependence of various functions and unknowns on x and t. Moreover, a dot above
a variable represents its first derivative with respect to the time variable and two dots indicate derivative of the
second order.

Let u = (ui)d
i=1 ∈ R

d, ϕ ∈ R, σ = (σij)d
i,j=1 ∈ S

d and ε(u) = (εij(u))d
i,j=1 ∈ S

d denote the displacements,
the electric potential, the stress tensor and the linearized strain tensor, respectively. We recall that

εij(u) =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, . . . , d.
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The body is assumed to be made of a viscoelastic-viscoplastic piezoelectric material and it satisfies the following
constitutive law (see, for instance, [23, 30]),

σ(x, t) = Aε(u̇(x, t)) + Bε(u(x, t)) +
∫ t

0

G(σ(x, s), ε(u(x, s))) ds− E∗E(ϕ(x, t)), (2.1)

where A = (aijkl) and B = (bijkl) are the fourth-order viscous and elastic tensors, respectively, G is a viscoplastic
function whose properties will be detailed later, E(ϕ) = (Ei(ϕ))d

i=1 represents the electric field defined by

Ei(ϕ) = − ∂ϕ

∂xi
, i = 1, . . . , d,

and E∗ = (e∗ijk)d
i,j,k=1 denotes the transpose of the third-order piezoelectric tensor E = (eijk)d

i,j,k=1. We recall
that

e∗ijk = ekij , for all i, j, k = 1, . . . , d.

Following [11] the following constitutive law is satisfied for the electric potential,

D = Eε(u) + βE(ϕ),

where D = (Di)d
i=1 is the electric displacement field and β = (βij)d

i,j=1 is the electric permittivity tensor.
We turn now to describe the boundary conditions.
On the boundary part ΓD we assume that the body is clamped and thus the displacement field vanishes there

(and so u = 0 on ΓD × (0, T )). Moreover, since the density of traction forces fF is applied on the boundary
part ΓF , it follows that σν = fF on ΓF × (0, T ).

The contact is assumed with a deformable obstacle and so, the well-known normal compliance contact con-
dition is employed for its modelling (see [34, 40]); that is, the normal stress σν = σν · ν on ΓC is given by

−σν = p(uν − s),

where uν = u · ν denotes the normal displacement, in such a way that, when uν > s, the difference uν − s
represents the interpenetration of the body’s asperities into those of the obstacle. The normal compliance
function p is prescribed and it satisfies p(r) = 0 for r ≤ 0, since then there is no contact. As an example, one
may consider

p(r) = cp r+,

where cp > 0 represents a deformability constant (that is, it denotes the stiffness of the obstacle), and r+ =
max {0, r}. Formally, the classical Signorini nonpenetration conditions are obtained in the limit cp → ∞. We
also assume that the contact is frictionless, i.e. the tangential component of the stress field, denoted by στ =
σν − σνν, vanishes on the contact surface.

Let Ω be subject to a prescribed electric potential on ΓA and to a density of surface electric charges qF
on ΓB, that is,

ϕ = ϕA on ΓA × (0, T ), D · ν = qF on ΓB × (0, T ).

For the sake of simplicity, we assume that no electric potential is imposed on the boundary ΓA (i.e. ϕA = 0),
and that qF = 0 on ΓC ; that is, the foundation is supposed to be insulator. We note that it is straightforward
to extend the results presented below to more general situations by decomposing Γ in a different way and by
introducing some modifications in the analyses shown in the following sections.

The mechanical problem of the dynamic deformation of a viscoelastic-viscoplastic piezoelectric body in contact
with a deformable obstacle is then written as follows.
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Problem P. Find a displacement field u : Ω × [0, T ] → R
d, a stress field σ : Ω × [0, T ] → S

d, an electric
potential field ϕ : Ω × (0, T ) → R and an electric displacement field D : Ω × (0, T ) → R

d such that,

σ(x, t) = Aε(u̇(x, t)) + Bε(u(x, t)) +
∫ t

0

G(σ(x, s), ε(u(x, s))) ds

−E∗E(ϕ(x, t)) for a.e. x ∈ Ω, t ∈ (0, T ), (2.2)
D = Eε(u) + βE(ϕ) in Ω × (0, T ), (2.3)
ρü − Div σ = f0 in Ω × (0, T ), (2.4)
divD = q0 in Ω × (0, T ), (2.5)
u = 0 on ΓD × (0, T ), (2.6)
σν = fF on ΓF × (0, T ), (2.7)
στ = 0, −σν = p(uν − s) on ΓC × (0, T ), (2.8)

ϕ = 0 on ΓA × (0, T ), (2.9)
D · ν = qF on ΓB × (0, T ), (2.10)
u(0) = u0, u̇(0) = v0 in Ω. (2.11)

Here, ρ > 0 is the density of the material (which is assumed constant for simplicity), and u0 and v0 represent
initial conditions for the displacement and velocity fields, respectively. f0 is the density of the body forces acting
in Ω and q0 is the volume density of free electric charges. Moreover, Div and div represent the divergence
operators for tensor and vector-valued functions, respectively.

In order to obtain the variational formulation of Problem P, let us denote by H = [L2(Ω)]d and define the
variational spaces V , W and Q as follows,

V = {w ∈ [H1(Ω)]d ; w = 0 on ΓD},
W = {ψ ∈ H1(Ω) ; ψ = 0 on ΓA},
Q = {τ = (τij)d

i,j=1 ∈ [L2(Ω)]d×d ; τij = τji, i, j = 1, . . . , d}.

Remark 2.1. We could assume ρ to be more general. To do that we should follow a standard procedure (see
for example [46], p. 105). If we assume

ρ ∈ L∞(Ω), ρ(x) ≥ ρ∗ > 0 a.e. x ∈ Ω, (2.12)

where ρ∗ is a constant, we shall use a modified inner product in H , given by

((u,v))H =
∫

Ω

ρu · v dx ∀u,v ∈ H.

Let ||| · |||H denote the associated norm, i.e.,

|||u|||2H = ((u,u))
1
2
H ∀u ∈ H.

By (2.12), the norm ||| · |||H is equivalent to the usual L2-norm.

We will make the following assumptions on the problem data.
The viscosity tensor A(x) = (aijkl(x))d

i,j,k,l=1 : τ ∈ S
d → A(x)(τ ) ∈ S

d satisfies:

(a) aijkl = aklij = ajikl for i, j, k, l = 1, . . . , d.
(b) aijkl ∈ L∞(Ω) for i, j, k, l = 1, . . . , d.
(c) There exists mA > 0 such that A(x)τ · τ ≥ mA ‖τ‖2 ∀ τ ∈ S

d, a.e. x ∈ Ω.
(2.13)
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The elastic tensor B(x) = (bijkl(x))d
i,j,k,l=1 : τ ∈ S

d → B(x)(τ ) ∈ S
d satisfies:

(a) bijkl = bklij = bjikl for i, j, k, l = 1, . . . , d.
(b) bijkl ∈ L∞(Ω) for i, j, k, l = 1, . . . , d.
(c) There exists mB > 0 such that B(x)τ · τ ≥ mB ‖τ‖2 ∀ τ ∈ S

d, a.e. x ∈ Ω.
(2.14)

The piezoelectric tensor E(x) = (eijk(x))d
i,j,k=1 : τ ∈ S

d → E(x)(τ ) ∈ R
d satisfies:

(a) eijk = eikj for i, j, k = 1, . . . , d.
(b) eijk ∈ L∞(Ω) for i, j, k = 1, . . . , d. (2.15)

The permittivity tensor β(x) = (βij(x))d
i,j=1 : w ∈ R

d → β(x)(w) ∈ R
d verifies:

(a) βij = βji for i, j = 1, . . . , d.
(b) βij ∈ L∞(Ω) for i, j = 1, . . . , d.
(c) There exists mβ > 0 such that β(x)w · w ≥ mβ ‖w‖2 ∀w ∈ R

d, a.e. x ∈ Ω.
(2.16)

The normal compliance function p : ΓC × R −→ R
+ satisfies:

(a) There exists Lp > 0 such that
|p(x, r1) − p(x, r2)| ≤ Lp |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ ΓC .

(b) The mapping x �→ p(x, r) is Lebesgue measurable on ΓC ,
∀r ∈ R.

(c) (p(x, r1) − p(x, r2)) · (r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ ΓC .
(d) The mapping x �→ p(x, r) = 0 for all r ≤ 0.

(2.17)

The viscoplastic function G : Ω × S
d × S

d → G(x)(τ , ε) ∈ S
d satisfies:

(a) There exists LG > 0 such that
|G (x,σ1, ε1) − G (x,σ2, ε2)| ≤ LG (|ε1 − ε2| + |σ1 − σ2|)
for all ε1, ε2,σ1,σ2 ∈ S

d, a.e. x ∈ Ω.
(b) The function x → G (x,σ, ε) is measurable.
(c) The mapping x → G (x,0,0) belongs to Q.

(2.18)

The following regularity is assumed on the density of volume forces and tractions:

f0 ∈ C([0, T ];H), fF ∈ C([0, T ]; [L2(ΓF )]d),
q0 ∈ C([0, T ];L2(Ω)), qF ∈ C([0, T ];L2(ΓB)). (2.19)

Finally, we assume that the initial displacement and velocity satisfy

u0,v0 ∈ V. (2.20)

Remark 2.2. We can replace (2.20) by asking a less restrictive condition u0 ∈ V, v0 ∈ H .

Moreover, we denote by V ′ the dual space of V . We identify H with its dual and consider the Gelfand triple

V ⊂ H ⊂ V ′.

We use the notation 〈·, ·〉V ′×V to denote the duality product and, in particular, we have

〈v,u〉V ′×V = (v,u)H ∀u ∈ V, v ∈ H.
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Using Riesz’ theorem, from (2.19) we can define the elements f(t) ∈ V ′ and q(t) ∈W given by

〈f(t),w〉V ′×V =
∫

Ω

f0(t) · w dx +
∫

ΓF

fF (t) · w dΓ ∀w ∈ V,

(q(t), ψ)W =
∫

Ω

q0(t)ψ dx +
∫

ΓB

qF (t)ψ dΓ ∀ψ ∈ W,

and then f ∈ C([0, T ];V ′) and q ∈ C([0, T ];W ). Now, let us define the contact functional j : V × V → R by

j(u,v) =
∫

ΓC

p(uν − s) vν dΓ ∀u,v ∈ V,

where we let vν = v · ν for all v ∈ V . Moreover, from properties (2.17) let us conclude that

|j(u,w) − j(v,w)| ≤ C‖u − v‖V ‖w‖V ∀u,v,w ∈ V. (2.21)

Plugging (2.2) into (2.4), (2.3) into (2.5) and using the previous boundary conditions, applying a Green’s
formula we derive the following variational formulation of Problem P, written in terms of the velocity field
v(t) = u̇(t) and the electric potential ϕ(t).

Problem 2.3. Find a velocity field v : [0, T ] → V , a stress field σ : [0, T ] → Q and an electric potential field
ϕ : [0, T ] →W such that v(0) = v0 and for a.e. t ∈ (0, T ) and for all w ∈ V and ψ ∈W ,

σ(t) = Aε(u̇(t)) + Bε(u(t)) +
∫ t

0

G(σ(s), ε(u(s))) ds− E∗E(ϕ(t)), (2.22)

〈ρv̇(t),w〉V ′×V +
(
Aε(v(t)) + Bε(u(t)) +

∫ t

0

G(σ(s), ε(u(s))) ds, ε(w)
)

Q

+ (E∗E(ϕ(t)), ε(w))Q + j(u(t),w) = 〈f(t),w〉V ′×V , (2.23)

(β∇ϕ(t),∇ψ)H − (Eε(u(t)),∇ψ)H = (q(t), ψ)W , (2.24)

where the displacement field u(t) is given by

u(t) =
∫ t

0

v(s) ds+ u0. (2.25)

3. An existence and uniqueness result

Theorem 3.1. Assume (2.13)–(2.20) hold. Then, there exists a unique solution (u,σ, ϕ) to Problem 2.3. More-
over, the solution satisfies

u ∈ H1(0, T ;V ) ∩ C1([0, T ];H), ü ∈ L2(0, T ;V ′), (3.1)

σ ∈ L2(0, T ;Q), Div σ ∈ L2(0, T ;V ′), (3.2)
ϕ ∈ C([0, T ];W ). (3.3)

The proof of Theorem 3.1 will be carried in several steps. First, let M ∈ L2(0, T ;Q) and consider the auxiliary
problem.

Problem 3.2. Find a velocity field vM : [0, T ] → V and an electric field ϕM : [0, T ] →W such that vM (0) = v0

and for a.e. t ∈ (0, T ) and for all w ∈ V and ψ ∈W ,

〈ρv̇M (t),w〉V ′×V + (Aε(vM (t)) + Bε(uM (t)), ε(w))Q + (E∗∇ϕM (t), ε(w))Q + j(uM (t),w)

= 〈f (t),w〉V ′×V − (M(t), ε(w))Q, (3.4)
(β∇ϕM (t),∇ψ)H − (Eε(uM (t)),∇ψ)H = (q(t), ψ)W , (3.5)
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where the displacement field uM (t) is given by

uM (t) =
∫ t

0

vM (s) ds+ u0. (3.6)

Theorem 3.3. Assume (2.13)–(2.20) hold. Then, there exists a unique solution (vM , ϕM ) to Problem 3.2.
Moreover, the following regularities hold:

uM ∈ H1(0, T ;V ) ∩ C1([0, T ];H), üM ∈ L2(0, T ;V ′), (3.7)
ϕM ∈ C([0, T ];W ). (3.8)

To show the proof of this theorem we have to proceed in several steps as well. Let η ∈ L2(0, T ;V ′) be given
and consider the following additional auxiliary problem.

Problem 3.4. Find a velocity field vMη : [0, T ] → V such that vMη(0) = v0 and for a.e. t ∈ (0, T ) and for all
w ∈ V ,

〈ρv̇Mη(t),w〉V ′×V + (Aε(vMη(t)), ε(w))Q = 〈f (t) − η(t) − M(t),w〉V ′×V , (3.9)

where the displacement field uMη(t) is given by

uMη(t) =
∫ t

0

vMη(s) ds+ u0. (3.10)

Remark 3.5. Note that in the right hand-side of variational equation (3.9) we make un abus de langage,
since actually we are identifying M (t) ∈ Q with the corresponding M(t) ∈ V ′ such that (M (t), ε(w))Q =<
M (t),w >V ′×V for all w ∈ V .

Now, we can apply a result proved in ([46], p. 107) which we can reformulate here as follows.

Proposition 3.6. Assume (2.13)–(2.20) hold. Then, there exists a unique solution to Problem 3.4 and it has
the regularity expressed in (3.7).

Remark 3.7. The result in [46] is used in the framework of the study of a viscoelastic dynamic contact problem,
based itself on an abstract result found in ([9], p. 140).

We now consider the auxiliary problem for the electric part.

Problem 3.8. Find an electric field ϕMη : [0, T ] →W such that for a.e. t ∈ (0, T ) and for all ψ ∈ W ,

(β∇ϕMη(t),∇ψ)H = (Eε(uMη(t)),∇ψ)H + (q(t), ψ)W . (3.11)

We have the following result.

Proposition 3.9. Assume (2.13)–(2.20) hold. Then, there exists a unique solution to Problem 3.8 and it has
the regularity expressed in (3.8).

Proof. We define a bilinear form b(·, ·) : W ×W → IR such that

b(ϕ, ψ) = (β∇ϕ,∇ψ)H ∀ϕ, ψ ∈ W.

We use (2.16) to show that the bilinear form is continuous, symmetric and coercive on W . Moreover, using (3.11)
and (2.15), the Riesz’ representation theorem allows us to define an element qη : [0, T ] →W such that

(qη(t), ψ)W = (Eε(uMη(t)),∇ψ)H + (q(t), ψ)W ∀ψ ∈ W.

We apply the Lax−Milgram theorem to deduce that there exists a unique element ϕMη(t) such that

b(ϕMη(t), ψ) = (qη(t), ψ)W ∀ψ ∈W.

We conclude that ϕMη(t) is the solution to variational equation (3.11). Moreover, by using (2.19) and the
regularity of uMη and q, we conclude straightforwardly that ϕMη ∈ C([0, T ];W ). �
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Now, let Λη(t) denote the element of V ′ defined by

〈ρΛη(t),w〉V ′×V = (Bε(uMη(t)), ε(w))Q + (E∗∇ϕMη(t), ε(w))Q + j(uMη(t),w), (3.12)

for all w ∈ V and t ∈ [0, T ]. We have the following result.

Proposition 3.10. For η ∈ L2(0, T ;V ′) it follows that Λη ∈ C([0, T ];V ′) and the operator Λ : L2(0, T ;V ′) →
L2(0, T ;V ′) has a unique fixed point η∗.

Proof. The continuity of Λη is a straightforward consequence of the continuity of ϕMη and uMη. Let now
η1,η2 ∈ L2(0, T ;V ′) and t ∈ [0, T ]. We use the shorter notation ui = uMηi , vi = vMηi , ϕi = ϕMηi , for i = 1, 2.
Then, taking η = ηi for i = 1, 2 successively in (3.12) and subtracting the resulting equations, we have, for all
w ∈ V and t ∈ (0, T ),

〈ρΛη1(t) − ρΛη2(t),w〉V ′×V = (B(ε(u1(t)) − ε(u2(t))), ε(w))Q

+ (E∗∇(ϕ1(t) − ϕ2(t)), ε(w))Q + j(u1(t),w) − j(u2(t),w).

By using (2.14), (2.15) and (2.21), we find that

‖Λη1(t) − Λη2(t)‖V ′ ≤ C(‖u1(t) − u2(t)‖V + ‖ϕ1(t) − ϕ2(t)‖W ). (3.13)

Here and below, C stands for a positive constant depending on data whose specific value may change from place
to place. On the other hand, from (3.10) we know that

‖u1(t) − u2(t)‖V ≤
∫ t

0

‖v1(s) − v2(s)‖V ds. (3.14)

Also, from (3.11) and using (2.15) and (2.16) we deduce

‖ϕ1(t) − ϕ2(t)‖W ≤ C‖u1(t) − u2(t)‖V ,

which, combined with (3.14), gives

‖ϕ1(t) − ϕ2(t)‖W ≤ C

∫ t

0

‖v1(s) − u2(s)‖V ds. (3.15)

Thus, by using consecutively (3.15) and (3.14) in (3.13), we obtain

‖Λη1(t) − Λη2(t)‖V ′ ≤ C

∫ t

0

‖v1(s) − v2(s)‖V ds,

which implies

‖Λη1(t) − Λη2(t)‖2
V ′ ≤ C

∫ t

0

‖v1(s) − v2(s)‖2
V ds. (3.16)

Taking η = ηi for i = 1, 2 successively in (3.9) with w = v1(t)−v2(t) and subtracting the resulting expressions,
we find

〈ρv̇1(t) − ρv̇2(t),v1(t) − v2(t)〉V ′×V + (A(ε(v1(t)) − ε(v2(t))), ε(v1(t)) − ε(v2(t)))Q

= 〈η2(t) − η1(t),v1(t) − v2(t)〉V ′×V.
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By integrating in time, using the ellipticity of A, the fact that v1(0) = v2(0) = v0 and Korn’s inequality, we find

mA
∫ t

0

‖v1(s) − v2(s)‖2
V ds ≤

∫ t

0

〈η2(s) − η1(s),v1(s) − v2(s)〉V ′×V ds

≤ 1
mA

∫ t

0

‖η2(s) − η1(s)‖2
V ′ds+

mA
4

∫ t

0

‖v1(s) − v2(s)‖2
V ds,

where we used several times Young’s inequality

ab ≤ εa2 +
1
4ε
b2, a, b, ε ∈ R, ε > 0. (3.17)

Plugging this into (3.16) we find that

‖Λη1(t) − Λη2(t)‖2
V ′ ≤ C

∫ t

0

‖η1(s) − η2(s)‖2
V ′ ds,

and using a standard argument (see, for example, Lem. 4.7 in [46]), from the previous inequality and using the
Banach’s fixed point theorem we conclude that there exists a unique η∗ ∈ L2(0, T ;V ′) such that Λη∗ = η∗. �

We can now give the Proof of Theorem 3.3.

Proof of Theorem 3.3. By using Proposition 3.10 there exists a unique η∗ ∈ L2(0, T ;V ′) such that Λη∗ = η∗.
We define uM = uMη∗ , vM = vMη∗ and ϕM = ϕMη∗ . By taking η = η∗ in (3.11) we obtain (3.5). Also,
from (3.12) we get

〈ρη∗(t),w〉V ′×V = (Bε(uM (t)), ε(w))Q + (E∗∇ϕM (t), ε(w))Q + j(uM (t),w),

for all w ∈ V and t ∈ [0, T ]. Therefore, by taking η = η∗ in (3.9) and using the previous equality, we obtain
the variational equation (3.4). Finally, (3.6) follows from (3.10), and the regularities are a consequence of the
regularities given by Propositions 3.6 and 3.9. �

Further, we define the operator Θ : C([0, T ];Q) → C([0, T ];Q) by

ΘF = G(σM , ε(uM )), where M(t) =
∫ t

0

F (s) ds ∀F ∈ C([0, T ];Q),

and uM is the displacement field solution to Problem 3.2 while σM is the stress field:

σM = Aε(vM ) + Bε(uM ) + M + E∗∇ϕM , (3.18)

with ϕM being the electric potential solution to Problem 3.2. Note that since M ∈ C([0, T ];Q), it is straight-
forward that σM ∈ C([0, T ];Q). We obtain the following result.

Proposition 3.11. The operator Θ has a unique fixed point F ∗ ∈ C([0, T ];Q).

Proof. The continuity of ΘF is a straightforward consequence of the continuity of σM and uM and (2.18).
Moreover, let F 1,F 2 ∈ C([0, T ];Q) and let M 1,M2 ∈ C([0, T ];Q) be their corresponding integrals in time.
For the sake of simplicity, we use the notation ui = uMi , vi = vMi , σi = σMi and ϕi = ϕMi for i = 1, 2. Let
t ∈ [0, T ]. From (2.18) we find that

‖ΘF 1(t) −ΘF 2(t)‖Q ≤ C(‖σ1(t) − σ2(t)‖Q + ‖u1(t) − u2(t)‖V ). (3.19)
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By using (3.18) in (3.4) successively for M = M i, i = 1, 2, taking in both cases w = v1(t) − v2(t) and
subtracting the resulting equations, we obtain

〈ρ(v̇1(t) − v̇2(t)),v1(t) − v2(t)〉V ′×V + (σ1(t) − σ2(t), ε(v1(t) − v2(t)))Q

+ j(u1(t),v1(t) − v2(t)) − j(u2(t),v1(t) − v2(t)) = 0.

Integrating in time and using (2.21) and v1(0) = v2(0) we deduce that

1
2
‖v1(t) − v2(t)‖2

V ≤ C

∫ t

0

(‖σ1(s) − σ2(s)‖Q + ‖u1(s) − u2(s)‖V )‖v1(s) − v2(s)‖V ds.

Also, from (3.18) it follows that

‖σ1(t)−σ2(t)‖Q ≤ C

(
‖v1(t) − v2(t)‖V + ‖u1(t) − u2(t)‖V + ‖ϕ1(t) − ϕ2(t)‖W +

∫ t

0

‖F 1(s) − F 2(s)‖Q ds
)
.

(3.20)
Combining the last two inequalities, we get

‖v1(t) − v2(t)‖2
V ≤ C

∫ t

0

(
‖v1(s) − v2(s)‖V + ‖u1(s) − u2(s)‖V

+ ‖ϕ1(s) − ϕ2(s)‖W +
∫ s

0

‖F 1(r) − F 2(r)‖Q dr

)
‖v1(s) − v2(s)‖V ds.

By using (3.14) and (3.15) and after some tedious calculations, we obtain

‖v1(t) − v2(t)‖2
V ≤ C

(∫ t

0

(‖v1(s) − v2(s)‖2
V ds+

∫ t

0

‖F 1(s) − F 2(s)‖2
Q ds

)
.

By using the Gronwall’s Lemma, we find that

‖v1(t) − v2(t)‖2
V ≤ C

∫ t

0

‖F 1(s) − F 2(s)‖2
Q ds.

This last inequality combined with (3.14), (3.15) and (3.20) allows us to have, from (3.19), the following estimate:

‖ΘF 1(t) −ΘF 2(t)‖2
Q ≤ C

∫ t

0

‖F 1(s) − F 2(s)‖2
Q ds.

Following a standard argument –see again Lemma 4.7 in [46]– from the previous inequality and using the
Banach’s fixed point theorem, we conclude that there exists a unique F ∗ ∈ C([0, T ];Q) such thatΘF ∗ = F ∗. �

We can now give the Proof of Theorem 3.1.

Proof of Theorem 3.1. By using Proposition 3.11 there exists a unique F ∗ ∈ C([0, T ];Q) such that ΘF ∗ = F ∗.
We define

M∗(t) =
∫ t

0

F ∗(s) ds.

We also define u = uM∗ , v = vM∗ , σ = σM∗ and ϕ = ϕM∗ . By taking M = M∗ in (3.4) we obtain (2.23),
because

M(t) = M∗(t) =
∫ t

0

F ∗(s) ds =
∫ t

0

ΘF ∗(s) ds =
∫ t

0

G(σ(s), ε(u(s))) ds.

Finally, from (3.5) it follows (2.24), and (3.18) leads to (2.22). �



ANALYSIS OF A DYNAMIC VISCOELASTIC-VISCOPLASTIC PIEZOELECTRIC CONTACT PROBLEM 575

4. Fully discrete approximations and an a priori error analysis

In this section, we introduce a finite element algorithm for approximating solutions to variational problem 2.3.
Its discretization is done in two steps. First, we consider the finite element spaces V h ⊂ V , Qh ⊂ Q and Wh ⊂W
given by

V h = {vh ∈ [C(Ω)]d ; vh
|T ∈ [P1(T )]d, T ∈ T h, vh = 0 on ΓD}, (4.1)

Qh = {τh ∈ Q ; τ h
|T ∈ [P0(T )]d×d, T ∈ T h}, (4.2)

Wh = {ψh ∈ C(Ω) ; ψh
|T ∈ P1(T ), T ∈ T h, ψh = 0 on ΓA}, (4.3)

where Ω is assumed to be a polyhedral domain, T h denotes a triangulation of Ω compatible with the partition
of the boundary Γ = ∂Ω into ΓD, ΓN and ΓC on one hand, and into ΓA and ΓB on the other hand, and Pq(T ),
q = 0, 1, represents the space of polynomials of global degree less or equal to q in T . Here, h > 0 denotes the
spatial discretization parameter.

Secondly, the time derivatives are discretized by using a uniform partition of the time interval [0, T ], denoted
by 0 = t0 < t1 < . . . < tN = T , and let k be the time step size, k = T/N . Moreover, for a continuous function
f(t) we denote fn = f(tn) and, for the sequence {zn}N

n=0, we denote by δzn = (zn − zn−1)/k its corresponding
divided differences.

Using a hybrid combination of the forward and backward Euler schemes, the fully discrete approximation of
Problem 2.3 is the following.

Problem 4.1. Find a discrete velocity field vhk = {vhk
n }N

n=0 ⊂ V h, a discrete stress field σhk = {σhk
n }N

n=0 ⊂ Qh

and a discrete electric potential field ϕhk = {ϕhk
n }N

n=0 ⊂ Wh such that vhk
0 = vh

0 and for n = 1, . . . , N and for
all wh ∈ V h and ψh ∈Wh,

σhk
n = Aε(vhk

n ) + Bε(uhk
n ) + k

n−1∑
j=0

G(σhk
j , ε(uhk

j )) − E∗E(ϕhk
n−1), (4.4)

(ρδvhk
n ,wh)H +

⎛
⎝Aε(vhk

n ) + Bε(uhk
n ) + k

n−1∑
j=0

G(σhk
j , ε(uhk

j )), ε(wh)

⎞
⎠

Q

= 〈fn,w
h〉V ′×V −

(
E∗E(ϕhk

n−1), ε(wh)
)
Q
− j(uhk

n−1,w
h), (4.5)

(β∇ϕhk
n ,∇ψh)H − (Eε(uhk

n ),∇ψh)H = (qn, ψh)W , (4.6)

where the discrete displacement field uhk = {uhk
n }N

n=0 ⊂ V h is given by

uhk
n = k

n∑
j=1

vhk
j + uh

0 , (4.7)

and the artificial discrete initial condition ϕhk
0 is the solution to the following problem:

(β∇ϕhk
0 ,∇ψh)H − (Eε(uh

0 ),∇ψh)H = (q0, ψh)W ∀ψh ∈Wh. (4.8)

Here, we note that the discrete initial conditions, denoted by uh
0 and vh

0 are given by

uh
0 = Phu0, vh

0 = Phv0, (4.9)

where Ph is the [L2(Ω)]d-projection operator over the finite element space V h.
Using assumptions (2.13)–(2.20) and the classical Lax−Milgram lemma, it is easy to prove that Problem 4.1

has a unique discrete solution (vhk, ϕhk,σhk) ⊂ V h ×Wh ×Qh.
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Our aim in this section is to derive some a priori error estimates for the numerical errors un −uhk
n , vn −vhk

n ,
σn − σhk

n and ϕn − ϕhk
n . Therefore, we assume that the solution to Problem 2.3 has the following regularity:

u ∈ C1([0, T ];V ) ∩ C2([0, T ];H), σ ∈ C([0, T ];Q), ϕ ∈ C([0, T ];W ). (4.10)

Thus, we have the following result.

Theorem 4.2. Let assumptions (2.13)–(2.20) and the additional regularity (4.10) hold. If we denote by (v, ϕ,σ)
and (vhk, ϕhk,σhk) the respective solutions to problems 2.3 and 4.1, then there exists a positive constant C > 0,
independent of the discretization parameters h and k, such that, for all wh = {wh

j }N
j=0 ⊂ V h and ψh =

{ψh
j }N

j=0 ⊂Wh,

max
0≤n≤N

‖vn − vhk
n ‖2

H + max
0≤n≤N

‖un − uhk
n ‖2

V + max
0≤n≤N

‖ϕn − ϕhk
n ‖2

W

+Ck
N∑

j=0

‖vj − vhk
j ‖2

V + Ck

N∑
j=0

‖σj − σhk
j ‖2

Q

≤ Ck

N∑
j=1

(
‖v̇j − δvj‖2

H + ‖u̇j − δuj‖2
V + k2 + ‖vj − wh

j ‖2
V + ‖ϕj − ψh

j ‖2
W + I2

j

)

+C max
0≤n≤N

‖vn − wh
n‖2

H + C
(
‖u0 − uh

0‖2
V + ‖v0 − vh

0‖2
H + C‖ϕ0 − ψh

0 ‖2
W

)

+
C

k

N−1∑
j=1

‖vj − wh
j − (vj+1 − wh

j+1)‖2
H , (4.11)

where the integration error In is defined as

In =

∥∥∥∥∥∥
∫ tn

0

G(σ(s), ε(u(s))) ds− k

n−1∑
j=0

G(σj , ε(uj))

∥∥∥∥∥∥
Q

. (4.12)

Proof. First, we obtain some estimates on the stress field. Subtracting equations (2.22), at time t = tn, and (4.4),
taking into account assumptions (2.13)–(2.20) we easily find that

‖σn − σhk
n ‖Q ≤ C

(
‖vn − vhk

n ‖V + ‖un − uhk
n ‖V + In + k

+k
n−1∑
j=0

[
‖uj − uhk

j ‖V + ‖σj − σhk
j ‖Q + ‖ϕj − ϕhk

j ‖W

])
,

(4.13)

where the integration error In is defined in (4.12).
Secondly, we obtain the estimates on the electric potential field. We subtract variational equation (2.24), at

time t = tn and for ψ = ψh ∈ Wh, and discrete variational equation (4.6) to get, for all ψh ∈Wh,

(β∇(ϕn − ϕhk
n ),∇ψh)H − (Eε(un − uhk

n ),∇ψh)H = 0 ∀ψh ∈ Wh.

Therefore, it follows that, for all ψh ∈Wh,

(β∇(ϕn − ϕhk
n ),∇(ϕn − ϕhk

n ))H − (Eε(un − uhk
n ),∇(ϕn − ϕhk

n ))H

= (β∇(ϕn − ϕhk
n ),∇(ϕn − ψh))H − (Eε(un − uhk

n ),∇(ϕn − ψh))H .

Using again assumptions (2.13)–(2.20) and several times Young’s inequality (3.17), we find that

‖ϕn − ϕhk
n ‖2

W ≤ C
(
‖un − uhk

n ‖2
V + ‖ϕn − ψh‖2

W

)
∀ψh ∈ Wh. (4.14)
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Finally, we obtain the estimates on the velocity and displacement fields. To do that, we subtract variational
equation (2.23), at time t = tn and for w = wh ∈ V h, and discrete variational equation (4.5) to get, for all
wh ∈ V h,

(ρ(v̇n − δvhk
n ),wh)H +

(
Aε(vn − vhk

n ) + Bε(un − uhk
n ), ε(wh)

)
Q

+

⎛
⎝∫ tn

0

G(σ(s), ε(u(s))) ds− k

n−1∑
j=1

G(σj , ε(uj)), ε(wh)

⎞
⎠

Q

+

⎛
⎝k n−1∑

j=0

[G(σj , ε(uj)) − G(σhk
j , ε(uhk

j ))], ε(wh)

⎞
⎠

Q

−
(
E∗E(ϕn) − E∗E(ϕhk

n−1), ε(wh)
)
Q

+ j(un,w
h) − j(uhk

n−1,w
h) = 0.

Therefore, we find that, for all wh ∈ V h,

(ρ(v̇n − δvhk
n ),vn − vhk

n )H +
(
Aε(vn − vhk

n ) + Bε(un − uhk
n ), ε(vn − vhk

n )
)

Q

+

⎛
⎝∫ tn

0

G(σ(s), ε(u(s))) ds− k

n−1∑
j=0

G(σj , ε(uj)), ε(vn − vhk
n )

⎞
⎠

Q

+

⎛
⎝k n−1∑

j=0

[G(σj , ε(uj)) − G(σhk
j , ε(uhk

j ))], ε(vn − vhk
n )

⎞
⎠

Q

−
(
E∗E(ϕn) − E∗E(ϕhk

n−1), ε(vn − vhk
n )
)
Q

+ j(un,vn − vhk
n ) − j(uhk

n−1,vn − vhk
n )

= (ρ(v̇n − δvhk
n ),vn − wh)H +

(
Aε(vn − vhk

n ) + Bε(un − uhk
n ), ε(vn − wh)

)
Q

+

⎛
⎝∫ tn

0

G(σ(s), ε(u(s))) ds− k

n−1∑
j=0

G(σj , ε(uj)), ε(vn − wh)

⎞
⎠

Q

+

⎛
⎝k n−1∑

j=0

[G(σj , ε(uj)) − G(σhk
j , ε(uhk

j ))], ε(vn − wh)

⎞
⎠

Q

−
(
E∗E(ϕn) − E∗E(ϕhk

n−1), ε(vn − wh)
)
Q

+ j(un,vn − wh) − j(uhk
n−1,vn − wh).

Keeping in mind assumptions (2.13) and (2.14) it follows that

(
Aε(vn − vhk

n ), ε(vn − vhk
n )
)

Q
≥ C‖vn − vhk

n ‖2
V ,(

Bε(un − uhk
n ), ε(vn − vhk

n )
)
Q
≥
(
Bε(un − uhk

n ), ε(u̇n − δun)
)
Q

+
C

2k
{
‖un − uhk

n ‖2
V − ‖un−1 − uhk

n−1‖2
V

}
,

where δun = (un − un−1)/k and we used (4.7). Moreover, since

(ρ(v̇n − δvhk
n ),vn − vhk

n )H ≥ (ρ(v̇n − δvn),vn − vhk
n )H +

C

2k
{
‖vn − vhk

n ‖2
H − ‖vn−1 − vhk

n−1‖2
H

}
,
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where δvn = (vn −vn−1)/k, using again several times Young’s inequality (3.17) and assumptions (2.13)–(2.20),
we have

1
2k
[
‖vn − vhk

n ‖2
H − ‖vn−1 − vhk

n−1‖2
H

]
+

1
2k
[
‖un − uhk

n ‖2
V − ‖un−1 − uhk

n−1‖2
V

]
+ C‖vn − vhk

n ‖2
V

≤ C
(
‖v̇n − δvn‖2

H + ‖u̇n − δun‖2
V + k2 + ‖vn − vhk

n ‖2
H + ‖vn − wh‖2

V + ‖ϕn−1 − ϕhk
n−1‖2

W

+I2
n + ‖un − uhk

n ‖2
V + ‖un−1 − uhk

n−1‖2
V + ρ(δvn − δvhk

n ,vn − wh)H

)
∀wh ∈ V h.

Therefore, by induction we find that, for all wh = {wh
j }n

j=0 ⊂ V h,

‖vn − vhk
n ‖2

H + ‖un − uhk
n ‖2

V + Ck

n∑
j=1

‖vj − vhk
j ‖2

V

≤ Ck

n∑
j=1

(
‖v̇j − δvj‖2

H + ‖u̇j − δuj‖2
V + k2 + ‖vj − vhk

j ‖2
H + ‖vj − wh

j ‖2
V + ‖ϕj−1 − ϕhk

j−1‖2
W

+ I2
j + ‖uj − uhk

j ‖2
V + ρ(δvj − δvhk

j ,vj − wh
j )H

)
+ C

(
‖v0 − vh

0‖2
H + ‖u0 − uh

0‖2
V

)
. (4.15)

Now, combining (4.13), (4.14) and (4.15) it follows that, for all wh = {wh
j }n

j=0 ⊂ V h and ψh = {ψh
j }n

j=0 ⊂
Wh,

‖vn − vhk
n ‖2

H + ‖un − uhk
n ‖2

V + ‖ϕn − ϕhk
n ‖2

W + Ck

n∑
j=1

‖vj − vhk
j ‖2

V + Ck

n∑
j=1

‖σj − σhk
j ‖2

Q

≤ Ck

n∑
j=1

(
‖v̇j − δvj‖2

H + ‖u̇j − δuj‖2
V + k2 + ‖vj − vhk

j ‖2
H + ‖vj − wh

j ‖2
V + ‖ϕj−1 − ϕhk

j−1‖2
W

+ I2
j + ‖uj − uhk

j ‖2
V + ‖ϕj − ψh

j ‖2
W + ρ(δvj − δvhk

j ,vj − wh
j )H + k

j∑
l=1

‖σl − σhk
l ‖2

Q

)

+C
(
‖v0 − vh

0‖2
H + ‖u0 − uh

0‖2
V

)
.

Now, taking into account that

k

n∑
j=1

ρ(δvj − δvhk
j ,vj − wh

j )H =
n∑

j=1

ρ(vj − vhk
j − (vj−1 − vhk

j−1),vj − wh
j )H

= ρ(vn − vhk
n ,vn − wh

n)H + ρ(vh
0 − v0,v1 − wh

1 )H

+
n−1∑
j=1

ρ(vj − vhk
j ,vj − wh

j − (vj+1 − wh
j+1))H ,
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using once again Young’s inequality (3.17) we have, for all wh = {wh
j }n

j=0 ⊂ V h and ψh = {ψh
j }n

j=0 ⊂Wh,

‖vn − vhk
n ‖2

H + ‖un − uhk
n ‖2

V + ‖ϕn − ϕhk
n ‖2

W + Ck

n∑
j=1

‖vj − vhk
j ‖2

V + Ck

n∑
j=1

‖σj − σhk
j ‖2

Q

≤ Ck

n∑
j=1

(
‖v̇j − δvj‖2

H + ‖u̇j − δuj‖2
V + k2 + ‖vj − vhk

j ‖2
H + I2

j + ‖vj − wh
j ‖2

V

+ ‖ϕj−1 − ϕhk
j−1‖2

W + ‖uj − uhk
j ‖2

V + ‖ϕj − ψh
j ‖2

W + k

j∑
l=1

‖σl − σhk
l ‖2

Q

)
+C

(
‖v0 − vh

0‖2
H + ‖u0 − uh

0‖2
V + ‖v1 − wh

1‖2
H + ‖vn − wh

n‖2
H

)
+
C

k

n−1∑
j=1

‖vj − wh
j − (vj+1 − wh

j+1)‖2
H .

From the regularity (4.10) we conclude that ϕ(0) is the solution to the following problem:

(β∇ϕ(0),∇ψ0)H − (Eε(u(0)),∇ψ0)H = (q(0), ψ0)W ∀ψ0 ∈ W,

and so, proceeding as in the proof of estimates (4.14), we easily find that

‖ϕ0 − ϕhk
0 ‖2

W ≤ C
(
‖u0 − uh

0‖2
W + ‖ϕ0 − ψh

0 ‖2
W

)
∀ψh

0 ∈Wh.

Finally, using a discrete version of Gronwall’s inequality (see, for instance, [13]) we derive the a priori error
estimates (4.11). �

We note that from estimates (4.11) we can derive the convergence order under suitable additional regularity
conditions. For instance, if we assume that the continuous solution has the additional regularity:

u ∈ H2(0, T ;V ) ∩H3(0, T ;H) ∩ C1([0, T ]; [H2(Ω)]d), ϕ ∈ C([0, T ];H2(Ω)), (4.16)

then we have the following result.

Corollary 4.3. Let the assumptions of Theorem 4.2 still hold. Under the additional regularity conditions (4.16),
it follows the linear convergence of the solution obtained by Problem 4.1; that is, there exists a positive constant
C, independent of the discretization parameters h and k, such that

max
0≤n≤N

‖vn − vhk
n ‖H + max

0≤n≤N
‖un − uhk

n ‖V + max
0≤n≤N

‖ϕn − ϕhk
n ‖W ≤ C(h+ k).

Notice that this linear convergence is based on some well-known results concerning the approximation by the
finite element method (see, for instance, [17]), the discretization of the time derivatives and the following result
(see [5, 14] for details),

1
k

N−1∑
j=1

‖vj − Phvj − (vj+1 − Phvj+1)‖2
H ≤ Ch2‖u‖2

H2(0,T ;V ).

Moreover, from the approximation properties of operator Ph, taking into account regularities (4.16) we can
easily find that

‖u0 − Phu0‖2
V + ‖v0 − Phv0‖2

H ≤ Ch2.
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5. Numerical results

In order to verify the behaviour of the numerical method analyzed in the previous section, some numerical
experiments have been performed in two-dimensional problems. In all the examples presented, the elastic tensor
was chosen as the 2D plane-stress elasticity tensor,

(Bτ )αβ =
Er

1 − r2
(τ11 + τ22)δαβ +

E

1 + r
ταβ ∀τ ∈ S

2, (5.1)

where α, β = 1, 2, E and r are the Young’s modulus and the Poisson’s ratio, respectively, and δαβ denotes the
Kronecker symbol. The viscous tensor A has a similar form but multiplied by a damping coefficient 10−2, i.e.
A = 10−2 B.

The viscoplastic function is a version of the Maxwell function given by

G(σ, ε(u)) = − 1
100

Φ(σ), (5.2)

being Φ a truncation operator defined as

∀τ = (ταβ)2α,β=1, (Φ(τ ))αβ =

⎧⎨
⎩
L if ταβ > L,
ταβ if ταβ ∈ [−L,L],
−L if ταβ < −L,

where value L = 1000 was taken.
Moreover, as piezoelectric and permittivity tensors, the following matricial forms were considered:

eijk ≡ epq =
(

0 0 e13
e21 e22 0

)
, βij =

(
β11 0
0 β22

)
, (5.3)

where we have used the notations eijk and epq in such a way that p = i and q = 1 if (j, k) = (1, 1), q = 2 if
(j, k) = (2, 2) and q = 3 if (j, k) = (1, 2) or (j, k) = (2, 1).

Finally, in all the examples the normal compliance function is defined as

p(r) = cp max{0, r},

where cp > 0 is a deformability coefficient.

5.1. Numerical scheme

As a first step, the artificial discrete initial condition for the electric potential field is obtained by solving
equation (4.8). This leads to a linear symmetric system solved by using classical Cholesky’s method.

Secondly, being the solution uhk
n−1,v

hk
n−1 and ϕhk

n−1 known at time tn−1, the velocity field is obtained by solving
the discrete equation

(ρvhk
n ,wh)H + k

(
Aε(vhk

n ) + kBε(vhk
n ), ε(wh)

)
Q

= (ρvhk
n−1,w

h)H + k
〈
fn,w

h
〉

V ′×V
− kj(uhk

n−1,w
h)

+k
(
E∗E(ϕhk

n−1), ε(wh)
)
Q
−
(
kBε(uhk

n−1), ε(wh)
)

Q
− k2

⎛
⎝n−1∑

j=1

G
(
σhk

j , ε(uhk
j )
)
, ε(wh)

⎞
⎠

Q

,

where the decomposition
uhk

n = uhk
n−1 + kvhk

n , (5.4)

has been used. Later, displacement field uhk
n is updated through expression (5.4), and the electric potential field

is obtained solving equation (4.6). We note that both numerical problems lead to linear symmetric systems and
therefore, Cholesky’s method is applied again for their solution.

The numerical scheme was implemented on a Intel Core i5− 3337U @ 1.80 GHz using FreeFEM++ (see [28]
for details) and a typical run (100 step times and 10000 nodes) took about 3 min of CPU time.



ANALYSIS OF A DYNAMIC VISCOELASTIC-VISCOPLASTIC PIEZOELECTRIC CONTACT PROBLEM 581

Figure 1. Example 1: Physical setting and mesh for Nel = 8.

Table 1. Material constants.

Piezoelectric (C/m2) Permittivity (C2/(N m2)
e21 e22 e13 β11 β22

−5.4 15.8 12.3 916 830

5.2. A first example: numerical convergence

As a first example, a sequence of numerical solutions, based on uniform partitions of both the time interval
[0, 1] and the domain Ω = [0, 1] × [0, 1], have been performed in order to check the behaviour of the numerical
scheme.

The physical setting of the example is depicted in Figure 1 (left-hand side). The body is in initial contact
with a deformable foundation on its lower part while ΓD = ΓA is the right boundary {1} × [0, 1] (and so both
the displacement and electric potential fields vanish there). A surface force acts on the upper surface [0, 1]×{1}
and no electric charges are applied nor in the body or the surface.

The numerical solution corresponding to Nel = 512 subdivisions on each outer side of the square (see the
right-hand side of Figure 1 for the case Nel = 8), and k = 0.00078612 has been considered as the “exact”
solution in order to compute the numerical errors given by

Ehk = max
0≤n≤N

{
‖un − uhk

n ‖V + ‖vn − vhk
n ‖H + ‖ϕn − ϕhk

n ‖W

}
.

Both the piezoelectric and permittivity coefficients are depicted in Table 1. Moreover the following data have
been employed in the simulations:

T = 1 s, f0(x, t) = 0 N/m3
, fF (x, t) =

{
(0,−60(1− x1)t) N/m2 if x2=1,
0 N/m2 elsewhere,

E = 20 000 N/m2
, r = 0.3, cp = 105, ρ = 1 kg/m3

, ϕA = 0 V, q0 = 0 C/m3
, qF = 0 C/m2

,
u0 = 0 m, v0 = 0 m/s, ϕ0 = 0 V.

In Table 2 the numerical errors obtained for some discretization parameters Nel and k are shown. As can be
seen, the convergence of the numerical algorithm is clearly observed. The evolution of the error with respect to
the parameter k+ h is plotted in Figure 2 (here, h =

√
2

Nel
). The linear convergence of the algorithm seems to be

achieved.
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Table 2. Example 1: Numerical errors (×100) for some Nel and k.

Nel ↓ k → 0.0015625 0.003125 0.00625 0.0125 0.025 0.05 0.1
4 0.470744 0.470809 0.470941 0.471220 0.471838 0.473329 0.477455
8 0.255173 0.255208 0.255284 0.255468 0.255957 0.257490 0.263109
16 0.141647 0.141660 0.141698 0.141839 0.142445 0.144762 0.152973
32 0.080098 0.080101 0.080149 0.080420 0.081371 0.084702 0.096829
64 0.045528 0.045547 0.045663 0.046057 0.047449 0.052511 0.069826
128 0.025358 0.025405 0.025569 0.026165 0.028363 0.035951 0.058180
256 0.012722 0.012791 0.013062 0.014099 0.017720 0.028208 0.053679

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

h+k

E
hk

Asymptotic behaviour

Figure 2. Example 1: Asymptotic behaviour of the numerical scheme.

Figure 3. Example 2: Physical setting.

5.3. A second example: piezoelectric effect

As a second numerical example, in order to observe the effect of the piezoelectric properties of the material,
a physical setting as the one depicted in Figure 3 is considered.

In this case, the body Ω = [0, 4] × [0, 1] is clamped on its right end and it remains in initial contact with a
deformable foundation on its lower boundary. No physical forces act on the body, but a constant surface electric
charge (qF = 200 C/M2) is applied on the lower part of the boundary, where contact is produced. Here, as in
the previous example, we assume that ΓD = ΓA.
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Figure 4. Example 2: Deformed configuration (× 5000) at final time.

Figure 5. Example 2: Deformed configuration (× 5000) at final time.

The following data have been used

T = 1 s, fB(x, t) = 0 N/m3
, fF = 0 N/m2

, E = 2 × 106 N/m2
, r = 0.3, cp = 105, ρ = 1000 kg/m3

,

u0 = 0 m, v0 = 0 m/s, ϕ0 = 0 V, ϕA = 0 V, q0 = 0 C/m3
, qF =

{
200 C/m3 if x2 = 0,
0 elsewhere.

We can see in Figure 4 that deformations appear due to the piezoelectric effect which, added to the mechanical
restrictions, lead the body to a stress-state which can be observed in Figure 5 (right-hand side). In this figure
(left-hand side), the electric potential field is shown at final time.

5.4. A third example: deformable contact of an L-shaped domain

As a final example, we consider an L-shaped body which is submitted to the action of traction forces on its
upper horizontal boundary. The body is clamped on its lower horizontally boundary and an obstacle is assumed
to be in initial contact, as can be observed in Figure 6.

The following data are used in the simulation:

T = 1 s, fB(x, t) = 0 N/m3
, fF =

{
(0,−500(60− x1)t) N/m2 if x2 = 50,
0 N/m2 elsewhere,

E = 2.1 × 109 N/m2
, r = 0.3, cp = 105, ρ = 27 000 kg/m3

, ϕA = 0 V,
q0 = 0 C/m3

, qF = 0 C/m3
, u0 = 0 m, v0 = 0 m/s, ϕ0 = 0 V.

Both electric potential and von Mises stress norm are plotted, over the final configuration of the body and at
final time, in Figure 7. The area of maximum stress concentration is located near the contact boundary due to
the bending movement, and it coincides with the region where the electric potential reaches its maximum value
as it was expected.
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Figure 6. Example 3: Contact problem of an L-shaped domain.

Figure 7. Example 3: Contact problem of an L-shaped domain.
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