We derive an a priori error estimate for the numerical solution obtained by time and space discretization by the finite volume/finite element method of the barotropic Navier–Stokes equations. The numerical solution on a convenient polyhedral domain approximating a sufficiently smooth bounded domain is compared with an exact solution of the barotropic Navier–Stokes equations with a bounded density. The result is unconditional in the sense that there are no assumed bounds on the numerical solution. It is obtained by the combination of discrete relative energy inequality derived in [T. Gallouët, R. Herbin, D. Maltese and A. Novotný, IMA J. Numer. Anal. 36 (2016) 543–592.] and several recent results in the theory of compressible Navier–Stokes equations concerning blow up criterion established in [Y. Sun, C. Wang and Z. Zhang, J. Math. Pures Appl. 95 (2011) 36–47] and weak strong uniqueness principle established in [E. Feireisl, B.J. Jin and A. Novotný, J. Math. Fluid Mech. 14 (2012) 717–730].
Mots clés : Navier–Stokes system, finite element numerical method, finite volume numerical method, error estimates
@article{M2AN_2017__51_1_279_0, author = {Feireisl, Eduard and Ho\v{s}ek, Radim and Maltese, David and Novotn\'y, Anton{\'\i}n}, title = {Error estimates for a numerical method for the compressible {Navier{\textendash}Stokes} system on sufficiently smooth domains}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {279--319}, publisher = {EDP-Sciences}, volume = {51}, number = {1}, year = {2017}, doi = {10.1051/m2an/2016022}, zbl = {1360.35144}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016022/} }
TY - JOUR AU - Feireisl, Eduard AU - Hošek, Radim AU - Maltese, David AU - Novotný, Antonín TI - Error estimates for a numerical method for the compressible Navier–Stokes system on sufficiently smooth domains JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 279 EP - 319 VL - 51 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016022/ DO - 10.1051/m2an/2016022 LA - en ID - M2AN_2017__51_1_279_0 ER -
%0 Journal Article %A Feireisl, Eduard %A Hošek, Radim %A Maltese, David %A Novotný, Antonín %T Error estimates for a numerical method for the compressible Navier–Stokes system on sufficiently smooth domains %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 279-319 %V 51 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016022/ %R 10.1051/m2an/2016022 %G en %F M2AN_2017__51_1_279_0
Feireisl, Eduard; Hošek, Radim; Maltese, David; Novotný, Antonín. Error estimates for a numerical method for the compressible Navier–Stokes system on sufficiently smooth domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 279-319. doi : 10.1051/m2an/2016022. http://www.numdam.org/articles/10.1051/m2an/2016022/
R.A. Adams, Sobolev spaces. Academic Press, New York (1975).
F. Brezzi and M. Fortin, Mixed and hybrid finite elements methods. In vol. 15 of Springer series in computational mathematics (1991). | MR | Zbl
C. Cancès, H. Mathis and N. Seguin, Relative entropy for the finite volume approximation of strong solutions to systems of conservation laws. (2013). | HAL
Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures. Appl. 83 (2004) 243–275. | DOI | MR | Zbl
, and ,Optimal -estimates for parabolic boundary value problems with inhomogenous data. Math. Z. 257 (2007) 193–224. | DOI | MR | Zbl
, and .Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO: Anal. Numer. 7 (1973) 33–75. | Numdam | MR | Zbl
and ,The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70 (1979) 167–179. | DOI | MR | Zbl
,On the solvability of the compressible Navier–Stokes system in bounded domains. Nonlinearity 23 (2010) 383–407. | DOI | MR | Zbl
,L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press (1992) | MR | Zbl
Error estimates for the approximate solutions of a non-linear hyperbolic equation given by a finite volume scheme, IMA J. Numer. Anal. 18 (1998) 563–594. | DOI | MR | Zbl
, , and ,Weak-strong uniqueness property for the full Navier–Stokes-Fourier system. Arch. Rational Mech. Anal. 204 (2012) 683–706. | DOI | MR | Zbl
and ,On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3 (2001) 358–392. | DOI | MR | Zbl
, and ,Relative entropies, suitable weak solutions and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14 (2012) 717–730. | DOI | MR | Zbl
, and ,Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. 60 (2011) 611–631. | DOI | MR | Zbl
, and ,Convergence of a numerical method for the compressible Navier–Stokes system on general domains. Inst. Math. Cz. Acad. Sci. 57 (2014). | MR
, and ,Analysis in compressible fluid mechanics. ZAMM 78 (1998) 579–596. | DOI | MR | Zbl
,Numerical simulation of compressible viscous flow through cascades of profiles. ZAMM 76 (1996) 297–300. | Zbl
, and ,Combined finite element – finite volume solution of compressible flow. J. Comput. Appl. Math. 63 (1995) 179–199. | DOI | MR | Zbl
, and ,M. Feistauer, J. Felcman and I. Straškraba, Mathematical and Computational Methods for Compressible Flow. Clarendon Press, Oxford (2003) | MR | Zbl
An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations. ESAIM: M2AN 42 (2008) 303–331. | DOI | Numdam | MR | Zbl
, , and ,A convergent finite element-finite volume scheme for the compressible Stokes problem. I. The isothermal case. Math. Comp. 78 (2009) 1333–1352. | DOI | MR | Zbl
, and ,Error estimate for a numerical approximation to the compressible barotropic Navier–Stokes equations. IMA J. Numer. Anal. 36 (2016) 543–592. | DOI | MR | Zbl
, , and ,L. Gastaldo, R. Herbin, W. Kheriji, C. Lapuerta and J.C. Latché, Staggered discretizations, pressure correction schemes and all speed barotropic flows, Finite volumes for complex applications. VI. Problems and perspectives, Vols. 1, 2. Vol. 4 of Springer Proc. Math. Springer, Heidelberg (2011) 839–855. | MR | Zbl
L. Gastaldo, R. Herbin, J.-C. Latché and N. Therme, Consistency result of an explicit staggered scheme for the Euler equations. Preprint (2014).
On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. ESAIM: M2AN 48 (2014) 1807–1857. | DOI | MR | Zbl
, and ,Strongly regular families of boundary-fitted tetrahedral meshes of bounded domains. Preprint Inst. Math. Cz. Acad. Sci. 3 (2016). | MR | Zbl
,On the coupling of boundary integral and finite element methods. Math. Comp. 35 (1980) 1063–1079. | DOI | MR | Zbl
and ,An error estimate for a numerical scheme for the compressible Navier–Stokes system. Kragujevac J. Math. 30 (2007) 263–275. | MR | Zbl
,Finite volume schemes for Friedrichs systems in multiple space dimensions: a priori and a posteriori estimates. Numer. Methods Partial Differ. Equ. 21 (2005) 104–131. | DOI | MR | Zbl
,A convergent nonconforming finite element method for compressible Stokes flow. SIAM J. Numer. Anal. 48 (2010) 1846–1876. | DOI | MR | Zbl
and ,A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125 (2013) 441–510 | DOI | MR | Zbl
,D. Kröner, Directionally adapted upwind schemes in 2-D for the Euler equations. Finite approximations in fluid mechanics. Vol. 25 of Notes Numer. Fluid Mech. Friedr. Vieweg, Braunschweig (1989) 249–263. | MR | Zbl
D. Kröner, Numerical schemes for the Euler equations in two space dimensions without dimensional splitting. Nonlinear hyperbolic equations – theory, computation methods, and applications (Aachen, 1988). Vol. 24 of Notes Numer. Fluid Mech. Friedr. Vieweg, Braunschweig (1989) 342–352. | MR | Zbl
A Lax - Wendroff type theorem for upwind finite volume schemes in -D. East-West J. Numer. Math. 4 (1996) 279–292. | MR | Zbl
, and ,A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multidimensions. Math. Comp. 69 (2000) 25–39. | DOI | MR | Zbl
and ,Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms. J. Funct. Anal. 250 (2007) 521–558. | DOI | MR | Zbl
,O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uralceva, Linear and qusilinear equations of parabolic type. Vol. 23 of AMS, Trans. Math. Monograph. Providence (1968). | MR | Zbl
P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 2, Compressible models, Oxford Science Publications. Vol. 10 of Oxford Lect. Ser. Math. Appl. The Clarendon Press, Oxford University Press, New York (1998). | MR
The analysis of a finite element method with streamline diffusion for the compressible Navier–Stokes equations. SIAM J. Numer. Anal. 38 (2000) 1–16. | DOI | MR | Zbl
,On a finite element method for three-dimensional unsteady compressible viscous flows. Numer. Methods Partial Differ. Eq. 20 (2004) 432–449. | DOI | MR | Zbl
,A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier–Stokes equations J. Math. Pures Appl. 95 (2011) 36–47. | DOI | MR | Zbl
, and ,R. Temam, Navier-Stokes equations, Theory and numerical analysis, With an appendix by F. Thomasset. Vol. 2 of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam, 3rd edition (1984). | MR | Zbl
Navier–Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103 (1986) 259–296. | DOI | MR | Zbl
and ,Convergence of an explicite finite volume scheme for first order symmetric systems. Numer. Math. 94 (2003) 573–602. | DOI | MR | Zbl
and ,Cité par Sources :