We consider a large-scale quadratic eigenvalue problem (QEP), formulated using P1 finite elements on a fine scale reference mesh. This model describes damped vibrations in a structural mechanical system. In particular we focus on problems with rapid material data variation, , composite materials. We construct a low dimensional generalized finite element (GFE) space based on the localized orthogonal decomposition (LOD) technique. The construction involves the (parallel) solution of independent localized linear Poisson-type problems. The GFE space is used to compress the large-scale algebraic QEP to a much smaller one with a similar modeling accuracy. The small scale QEP can then be solved by standard techniques at a significantly reduced computational cost. We prove convergence with rate for the proposed method and numerical experiments confirm our theoretical findings.
Accepté le :
DOI : 10.1051/m2an/2016019
Mots-clés : Quadratic eigenvalue problem, finite element, localized orthogonal decomposition
@article{M2AN_2017__51_1_147_0, author = {M\r{a}lqvist, Axel and Peterseim, Daniel}, title = {Generalized finite element methods for quadratic eigenvalue problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {147--163}, publisher = {EDP-Sciences}, volume = {51}, number = {1}, year = {2017}, doi = {10.1051/m2an/2016019}, mrnumber = {3601004}, zbl = {1360.65270}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016019/} }
TY - JOUR AU - Målqvist, Axel AU - Peterseim, Daniel TI - Generalized finite element methods for quadratic eigenvalue problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 147 EP - 163 VL - 51 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016019/ DO - 10.1051/m2an/2016019 LA - en ID - M2AN_2017__51_1_147_0 ER -
%0 Journal Article %A Målqvist, Axel %A Peterseim, Daniel %T Generalized finite element methods for quadratic eigenvalue problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 147-163 %V 51 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016019/ %R 10.1051/m2an/2016019 %G en %F M2AN_2017__51_1_147_0
Målqvist, Axel; Peterseim, Daniel. Generalized finite element methods for quadratic eigenvalue problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 147-163. doi : 10.1051/m2an/2016019. http://www.numdam.org/articles/10.1051/m2an/2016019/
I. Babuška and J. Osborn, Eigenvalue problems. In Handbook of numerical analysis. Vol. II of Handb. Numer. Anal. North-Holland, Amsterdam (1991) 641–787. | MR | Zbl
Can a finite element method perform arbitrary badly? Math. Comp. 69 (1999) 443–462. | DOI | MR | Zbl
and ,Finite element analysis of a quadratic eigenvalue problem arising in dissipative acoustics. SIAM J. Numer. Anal. 38 (2000) 267–291. | DOI | MR | Zbl
, , and ,NLEVP: A Collection of Nonlinear Eigenvalue Problems. ACM Trans. Math. Softw. 39 (2013) 7:1–7:28. | DOI | MR | Zbl
, , and ,Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. | DOI | MR | Zbl
,D. Brown and D. Peterseim, A multiscale method for porous microstructures. Preprint (2014). | arXiv | MR
Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36 (1999) 1571–1587. | DOI | MR | Zbl
and ,A.K. Chopra, Title Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition. Prentice Hall (2012).
P.G. Ciarlet, The finite element method for elliptic problems. Vol. 4 of Classics in Applied Mathematics. SIAM, Philadelphia (2002). | MR | Zbl
On spectral approximation. Part 1: The problem of convergence. RAIRO Anal. Numér. 12 (1978) 97–112. | DOI | Numdam | MR | Zbl
, and ,On spectral approximation. Part 2: Error estimates for the Galerkin method. RAIRO Anal. Numér. 12 (1978) 113–119. | DOI | Numdam | MR | Zbl
, and ,C. Engwer, P. Henning, A. Målqvist and D. Peterseim, Efficient implementation of the Localized Orthogonal Decomposition method. Preprint (2016). | arXiv | MR
Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comp. Meth. Appl. Mech. Eng. 295 (2015) 1–17. | DOI | MR | Zbl
and ,An algorithm for the complete solution of quadratic eigenvalue problems. ACM Trans. Math. Softw. 39 (2013) 18. | DOI | MR | Zbl
, and ,Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11 (2013) 1149–1175. | DOI | MR | Zbl
and ,Localized orthogonal decomposition techniques for boundary value problems. SIAM J. Sci. Comp. 36 (2014) A1609–A1634. | DOI | MR | Zbl
and ,Two-level discretization techniques for ground state computations of Bose-Einstein condensates. SIAM J. Numer. Anal. 52 (2014) 1525–1550. | DOI | MR | Zbl
, and ,P. Henning, P. Morgenstern and D. Peterseim, Multiscale partition of unity. In Meshfree Methods for Partial Differential Equations VII, edited by M. Griebel and M.A. Schweitzer. Vol. 100 of Lect. Notes Comput. Sci. Eng. Springer International Publishing (2015) 185–204. | MR
Numerical solution of quadratic eigenvalue problems with structure-perserving methods. SIAM J. Sci. Comp. 24 (2003) 1283–1302. | DOI | MR | Zbl
, and ,T. Kato, Perturbation theory for linear operators. Springer-Verlag, New York (1976). | MR | Zbl
Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM-Mitt. 27 (2004) 121–152. | DOI | MR | Zbl
and ,A. Målqvist and A. Persson, Multiscale techniques for parabolic equations. Preprint (2015). | arXiv | MR
Localization of elliptic multiscale problems. Math. Comp. 83 (2014) 2583–2603. | DOI | MR | Zbl
and ,Computation of eigenvalues by numerical upscaling. Numer. Math. 130 (2015) 337–361. | DOI | MR | Zbl
and ,Spectral approximation for compact operators. Math. Comp. 29 (1975) 712–725. | DOI | MR | Zbl
,D. Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction. Preprint (2014). | arXiv | MR
D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors. Preprint (2015). | arXiv | MR
G. Strang and G. Fix, An analysis of the finite element method. | MR | Zbl
A Survey of the Quadratic Eigenvalue Problem. SIAM Rev. 43 (2001) 235–286. | DOI | MR | Zbl
and ,Strong operator convergence and spectral theory of ordinary differential operators. Univ. Iagel. Acta Math. 34 (1997) 153–163. | MR | Zbl
,Cité par Sources :