Detectability and state estimation for linear age-structured population diffusion models
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1731-1761.

We investigate a state estimation problem for an infinite dimensional system appearing inpopulation dynamics. More precisely, given a linear model for age-structured populations with spatialdiffusion, we assume the initial distribution to be unknown and that we have at our disposal anobservation locally distributed in both age and space. Using Luenberger observers, we solve the inverseproblem of recovering asymptotically in time the distribution of population. The observer is designedusing a finite dimensional stabilizing output injection operator, yielding an effective reconstructionmethod. Numerical experiments are provided showing the feasibility of the proposed reconstructionmethod.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016002
Classification : 92D25, 35R30, 93D15, 93B55
Mots clés : Inverse problems, observers, stabilization, population dynamics, spatial diffusion
Ramdani, Karim 1 ; Tucsnak, Marius 2 ; Valein, Julie 2

1 Inria, 54600 Villers-lès-Nancy, France.
2 Université de Lorraine, Institut Élie Cartan de Lorraine, UMR 7502, 54506 Vandœuvre-lès-Nancy, France.
@article{M2AN_2016__50_6_1731_0,
     author = {Ramdani, Karim and Tucsnak, Marius and Valein, Julie},
     title = {Detectability and state estimation for linear age-structured population diffusion models},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1731--1761},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {6},
     year = {2016},
     doi = {10.1051/m2an/2016002},
     zbl = {1353.92084},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016002/}
}
TY  - JOUR
AU  - Ramdani, Karim
AU  - Tucsnak, Marius
AU  - Valein, Julie
TI  - Detectability and state estimation for linear age-structured population diffusion models
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1731
EP  - 1761
VL  - 50
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016002/
DO  - 10.1051/m2an/2016002
LA  - en
ID  - M2AN_2016__50_6_1731_0
ER  - 
%0 Journal Article
%A Ramdani, Karim
%A Tucsnak, Marius
%A Valein, Julie
%T Detectability and state estimation for linear age-structured population diffusion models
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1731-1761
%V 50
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016002/
%R 10.1051/m2an/2016002
%G en
%F M2AN_2016__50_6_1731_0
Ramdani, Karim; Tucsnak, Marius; Valein, Julie. Detectability and state estimation for linear age-structured population diffusion models. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1731-1761. doi : 10.1051/m2an/2016002. http://www.numdam.org/articles/10.1051/m2an/2016002/

B. Ainseba, Exact and approximate controllability of the age and space population dynamics structured model. J. Math. Anal. Appl. 275 (2002) 562–574. | DOI | Zbl

B. Ainseba and M. Iannelli, Exact controllability of a nonlinear population-dynamics problem. Differ. Integral Equ. 16 (2003) 1369–1384. | Zbl

B. Ainseba and M. Langlais, On a population dynamics control problem with age dependence and spatial structure. J. Math. Anal. Appl. 248 (2000) 455–474. | DOI | Zbl

D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems. C. R. Acad. Sci. Paris Sér. I Math. 340 (2005) 873–878. | DOI | Zbl

D. Auroux and M. Nodet, The back and forth nudging algorithm for data assimilation problems: theoretical results on transport equations. ESAIM: COCV 18 (2012) 318–342. | Numdam | Zbl

D. Auroux, P. Bansart and J. Blum, An evolution of the back and forth nudging for geophysical data assimilation: application to Burgers equation and comparisons. Inverse Probl. Sci. Eng. 21 (2013) 399–419. | DOI | Zbl

B.P. Ayati, A variable time step method for an age-dependent population model with nonlinear diffusion. SIAM J. Numer. Anal. 37 (2000) 1571–1589. | DOI | Zbl

B.P. Ayati and T.F. Dupont, Galerkin methods in age and space for a population model with nonlinear diffusion. SIAM J. Numer. Anal. 40 (2002) 1064–1076. | DOI | Zbl

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier-Stokes system. SIAM J. Control Optim. 49 (2011) 420–463. | DOI | Zbl

M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems. ESAIM: COCV 20 (2014) 924–956. | Numdam | Zbl

J.S. Baras, A. Bensoussan and M.R. James, Dynamic observers as asymptotic limits of recursive filters: special cases. SIAM J. Appl. Math. 48 (1988) 1147–1158. | DOI | Zbl

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53 (2004) 1443–1494. | DOI | Zbl

W.L. Chan and B.Z. Guo, On the semigroups of age-size dependent population dynamics with spatial diffusion. Manuscr. Math. 66 (1989) 161–181. | DOI | Zbl

D. Chapelle, N. Cîndea and P. Moireau, Improving convergence in numerical analysis using observers—the wave-like equation case. Math. Models Methods Appl. Sci. 22 (2012) 1250040. | DOI | Zbl

M.J. Chapman and A.J. Pritchard, Finite-dimensional compensators for nonlinear infinite-dimensional systems, in Control theory for distributed parameter systems and applications (Vorau, 1982). Vol. 54 of Lect. Notes Control Inform. Sci. Springer, Berlin (1983) 60–76. | Zbl

D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory. Vol. 93 of Appl. Math. Sci., 2nd edition. Springer-Verlag, Berlin, (1998). | Zbl

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations. SIAM J. Control Optim. 43 (2004) 549–569. | DOI | Zbl

R.F. Curtain and H. Zwart, An introduction to infinite-dimensional linear systems theory. Vol. 21 of Texts Appl. Math. Springer-Verlag, New York (1995). | Zbl

R. Curtain, M. Demetriou and K. Ito, Adaptive observers for structurally perturbed infinite dimensional systems, in Proc. of the 36th IEEE Conference on Decision and Control, 1997, Vol. 1 (1997) 509–514.

C. Cusulin and L. Gerardo-Giorda, A numerical method for spatial diffusion in age-structured populations. Numer. Methods Partial Differ. Equ. 26 (2010) 253–273. | Zbl

G. Di Blasio and A. Lorenzi, Direct and inverse problems in age-structured population diffusion. Discrete Contin. Dyn. Syst. Ser. S 4 (2011) 539–563. | Zbl

G. Di Blasio and A. Lorenzi, An identification problem in age-dependent population diffusion. Numer. Funct. Anal. Optim. 34 (2013) 36–73. | DOI | Zbl

H.W. Engl, W. Rundell and O. Scherzer, A regularization scheme for an inverse problem in age-structured populations. J. Math. Anal. Appl. 182 (1994) 658–679. | DOI | Zbl

E. Fridman, Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method. Automatica 49 (2013) 2250–2260. | DOI | Zbl

L. Gerardo-Giorda, Numerical approximation of density dependent diffusion in age-structured population dynamics, in Conference Applications of Mathematics 2013 in honor of the 70th birthday of Karel Segeth, edited by J. Brandts, S. Korotov, M. Kryzek, J. Sistek and T. Vejchodsky. Vol. 2013. Institute of Mathematics AS CR, Prague (2013) 88–97.

B.Z. Guo and W.L. Chan, On the semigroup for age dependent population dynamics with spatial diffusion. J. Math. Anal. Appl. 184 (1994) 190–199. | DOI | Zbl

M.E. Gurtin, A system of equations for age-dependent population diffusion. J. Theoret. Biol. 40 (1973). | DOI

M.E. Gurtin and R.C. Maccamy, Diffusion models for age-structured populations. Math. Biosci. 54 (1981) 49–59. | DOI | Zbl

M. Gyllenberg, A. Osipov and L. Päivärinta, The inverse problem of linear age-structured population dynamics. J. Evol. Equ. 2 (2002) 223–239. | DOI | Zbl

G. Haine, Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator. Math. Control. Signals Syst. 26 (2014) 435–462. | DOI | Zbl

G. Haine and K. Ramdani, Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations. Numer. Math. 120 (2012) 307–343. | DOI | Zbl

Z. Hidayat, R. Babuska, B. De Schutter and A. Nunez, Observers for linear distributed-parameter systems: A survey, in IEEE International Symposium on, Robotic and Sensors Environments (ROSE) (2011) 166–171.

W. Huyer, Semigroup formulation and approximation of a linear age-dependent population problem with spatial diffusion. Semigroup Forum 49 (1994) 99–114. | DOI | Zbl

W. Huyer, Approximation of a linear age-dependent population model with spatial diffusion. Commun. Appl. Anal. 8 (2004) 87–108. | Zbl

M.R. James and J.S. Baras, An observer design for nonlinear control systems, in Analysis and optimization of systems (Antibes, 1988). Vol. 111 of Lect. Notes Control Inform. Sci. Springer, Berlin (1988) 170–180. | Zbl

T. Kato, Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin (1995). | Zbl

O. Kavian and O. Traoré, Approximate controllability by birth control for a nonlinear population dynamics model. ESAIM: COCV 17 (2011) 1198–1213. | Numdam | Zbl

M.-Y. Kim, Galerkin methods for a model of population dynamics with nonlinear diffusion. Numer. Methods Partial Differ. Equ. 12 (1996) 59–73. | DOI | Zbl

M.-Y. Kim and E.-J. Park, Mixed approximation of a population diffusion equation. Comput. Math. Appl. 30 (1995) 23–33. | DOI | Zbl

M. Krstic, L. Magnis and R. Vazquez, Nonlinear control of the viscous Burgers equation: Trajectory generation, tracking and observer design. J. Dyn. Syst. Meas. Control 131 (2009) 021012. | DOI

M. Langlais, A nonlinear problem in age-dependent population diffusion. SIAM J. Math. Anal. 16 (1985) 510–529. | DOI | Zbl

M. Langlais, Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion J. Math. Biol. 26 (1988) 319–346. | DOI | Zbl

L. Lopez and D. Trigiante, A finite difference scheme for a stiff problem arising in the numerical solution of a population dynamic model with spatial diffusion. Nonlin. Anal. 9 (1985) 1–12. | DOI | MR | Zbl

D. Luenberger, Observing the state of a linear system, IEEE Trans. Mil. Electron. MIL-8 (1964) 74–80.

F.A. Milner, A numerical method for a model of population dynamics with spatial diffusion. Comput. Math. Appl. 19 (1990) 31–43. | DOI | MR | Zbl

P. Moireau, D. Chapelle and P. Le Tallec, Joint state and parameter estimation for distributed mechanical systems. Comput. Methods Appl. Mech. Eng. 197 (2008) 659–677. | DOI | MR | Zbl

P. Moireau, D. Chapelle and P. Le Tallec, Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging Inverse Probl. 25 (2009) 035010. | DOI | MR | Zbl

G.G. Pelovska, Numerical investigations in the field of age-structured population dynamics. Ph.D. thesis, University of Trento (2007).

A. Perasso, Identifiabilité de paramètres pour des systèmes décrits par des équations aux dérivées partielles. Application à la dynamique des populations. Ph.D. thesis, Université Paris Sud XI (2009).

K.D. Phung and G. Wang, An observability estimate for parabolic equations from a measurable set in time and its applications. J. Eur. Math. Soc. 15 (2013) 681–703. | DOI | MR | Zbl

M. Pilant and W. Rundell, Determining a coefficient in a first-order hyperbolic equation. SIAM J. Appl. Math. 51 (1991) 494–506. | DOI | MR | Zbl

J.-P. Puel, Une approche non classique d’un problème d’assimilation de données. C. R. Math. Acad. Sci. Paris 335 (2002) 161–166. | DOI | MR | Zbl

J.-P. Puel, A nonstandard approach to a data assimilation problem and Tychonov regularization revisited. SIAM J. Control Optim. 48 (2009) 1089–1111. | DOI | MR | Zbl

K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers. Automatica 46 (2010) 1616–1625. | DOI | MR | Zbl

J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete Contin. Dyn. Syst. 27 (2010) 1159–1187. | DOI | MR | Zbl

A. Rhandi, Positivity and stability for a population equation with diffusion on L 1 . Positivity 2 (1998) 101–113. | DOI | MR | Zbl

W. Rundell, Determining the death rate for an age-structured population from census data. SIAM J. Appl. Math. 53 (1993) 1731–1746. | DOI | MR | Zbl

A. Smyshlyaev and M. Krstic, Backstepping observers for a class of parabolic PDEs. Syst. Control Lett. 54 (2005) 613–625. | DOI | MR | Zbl

J. Song, J.Y. Yu, X.Z. Wang, S.J. Hu, Z.X. Zhao, J.Q. Liu, D.X. Feng and G.T. Zhu, Spectral properties of population operator and asymptotic behaviour of population semigroup. Acta Math. Sci. 2 (1982) 139–148. | DOI | MR | Zbl

O. Traore, Null controllability of a nonlinear population dynamics problem. Int. J. Math. Math. Sci. 20 (2006) 49279. | MR | Zbl

O. Traore, Approximate controllability and application to data assimilation problem for a linear population dynamics model. Int. J. Appl. Math. 37 (2007) 1, 12. | MR | Zbl

O. Traore, Null controllability and application to data assimilation problem for a linear model of population dynamics. Ann. Math. Blaise Pascal 17 (2010) 375–399. | DOI | Numdam | MR | Zbl

R. Triggiani, On the stabilizability problem in Banach space. J. Math. Anal. Appl. 52 (1975) 383–403. | DOI | MR | Zbl

R. Triggiani, Addendum. J. Math. Anal. Appl. 56 (1976) 492-493. | DOI | MR | Zbl

R. Triggiani, Boundary feedback stabilizability of parabolic equations. Appl. Math. Optim. 6 (1980) 201–220. | DOI | MR | Zbl

C. Walker, Some remarks on the asymptotic behavior of the semigroup associated with age-structured diffusive populations. Monatsh. Math. 170 (2013) 481–501. | DOI | MR | Zbl

G.F. Webb, Theory of nonlinear age-dependent population dynamics. Vol. 89 of Monogr. Textb. Pure Appl. Math. Marcel Dekker, Inc., New York (1985). | MR | Zbl

G.F. Webb, Population models structured by age, size and spatial position, in Structured population models in biology and epidemiology. Vol. 1936 of Lect. Notes Math. Springer, Berlin (2008) 1–49. | MR

J. Zabczyk, Remarks on the algebraic Riccati equation in Hilbert space. Appl. Math. Optim. 2 (1975/76) 251–258. | DOI | MR

Cité par Sources :