The Back and Forth Nudging algorithm for data assimilation problems : theoretical results on transport equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 318-342.

In this paper, we consider the back and forth nudging algorithm that has been introduced for data assimilation purposes. It consists of iteratively and alternately solving forward and backward in time the model equation, with a feedback term to the observations. We consider the case of 1-dimensional transport equations, either viscous or inviscid, linear or not (Burgers' equation). Our aim is to prove some theoretical results on the convergence, and convergence properties, of this algorithm. We show that for non viscous equations (both linear transport and Burgers), the convergence of the algorithm holds under observability conditions. Convergence can also be proven for viscous linear transport equations under some strong hypothesis, but not for viscous Burgers' equation. Moreover, the convergence rate is always exponential in time. We also notice that the forward and backward system of equations is well posed when no nudging term is considered.

DOI : 10.1051/cocv/2011004
Classification : 35Q35, 35R30, 65M32
Mots-clés : data assimilation, inverse problems, linear transport equations, Burgers' equation
@article{COCV_2012__18_2_318_0,
     author = {Auroux, Didier and Nodet, Ma\"elle},
     title = {The {Back} and {Forth} {Nudging} algorithm for data assimilation problems : theoretical results on transport equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {318--342},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {2},
     year = {2012},
     doi = {10.1051/cocv/2011004},
     mrnumber = {2954628},
     zbl = {1252.65159},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2011004/}
}
TY  - JOUR
AU  - Auroux, Didier
AU  - Nodet, Maëlle
TI  - The Back and Forth Nudging algorithm for data assimilation problems : theoretical results on transport equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 318
EP  - 342
VL  - 18
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2011004/
DO  - 10.1051/cocv/2011004
LA  - en
ID  - COCV_2012__18_2_318_0
ER  - 
%0 Journal Article
%A Auroux, Didier
%A Nodet, Maëlle
%T The Back and Forth Nudging algorithm for data assimilation problems : theoretical results on transport equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 318-342
%V 18
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2011004/
%R 10.1051/cocv/2011004
%G en
%F COCV_2012__18_2_318_0
Auroux, Didier; Nodet, Maëlle. The Back and Forth Nudging algorithm for data assimilation problems : theoretical results on transport equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 318-342. doi : 10.1051/cocv/2011004. http://www.numdam.org/articles/10.1051/cocv/2011004/

[1] D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems. C. R. Acad. Sci. Paris Sér. I 340 (2005) 873-878. | MR | Zbl

[2] D. Auroux and J. Blum, A nudging-based data assimilation method for oceanographic problems : the back and forth nudging (BFN) algorithm. Nonlin. Proc. Geophys. 15 (2008) 305-319.

[3] D. Auroux and S. Bonnabel, Symmetry-based observers for some water-tank problems. IEEE Trans. Automat. Contr. (2010) DOI : 10.1109/TAC.2010.2067291. | MR

[4] H. Brezis, Analyse fonctionnelle : théorie et applications. Dunod, Paris (1999). | Zbl

[5] R. Courant and D. Hilbert, Methods of Mathematical Physics II. Wiley-Interscience (1962). | Zbl

[6] L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence (1998). | MR | Zbl

[7] G. Evensen and P.J. Van Leeuwen, An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128 (1999) 1852-1867.

[8] B.-Z. Guo and W. Guo, The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control. Automatica 45 (2009) 790-797. | MR | Zbl

[9] B.-Z. Guo and Z.-C. Shao, Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations. Syst. Control Lett. 58 (2009) 334-341. | MR | Zbl

[10] J. Hoke and R.A. Anthes, The initialization of numerical models by a dynamic initialization technique. Mon. Weather Rev. 104 (1976) 1551-1556.

[11] R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME - J. Basic Eng. 82 (1960) 35-45.

[12] E. Kalnay, Atmospheric modeling, data assimilation and predictability. Cambridge University Press (2003).

[13] M. Krstic, L. Magnis and R. Vazquez, Nonlinear control of the viscous burgers equation : Trajectory generation, tracking, and observer design. J. Dyn. Sys. Meas. Control 131 (2009) 1-8.

[14] F.-X. Le Dimet, and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations : theoretical aspects. Tellus 38A (1986) 97-110.

[15] D. Luenberger, Observers for multivariable systems. IEEE Trans. Automat. Contr. 11 (1966) 190-197.

[16] Ph. Moireau, D. Chapelle and P. Le Tallec, Filtering for distributed mechanical systems using position measurements : perspectives in medical imaging. Inver. Probl. 25 (2009) 035010. | MR | Zbl

[17] K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers. Automatica 46 (2010) 1616-1625. | MR | Zbl

[18] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations : recent progress and open questions. SIAM Rev. 20 (1978) 639-739. | MR | Zbl

[19] A. Smyshlyaev and M. Krstic, Backstepping observers for a class of parabolic PDEs. Syst. Control Lett. 54 (2005) 613-625. | MR | Zbl

Cité par Sources :