Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 475-497.

We prove the convergence of an explicit numerical scheme for the discretization of a coupled hyperbolic-parabolic system in two space dimensions. The hyperbolic part is solved by a Lax−Friedrichs method with dimensional splitting, while the parabolic part is approximated by an explicit finite-difference method. For both equations, the source terms are treated by operator splitting. To prove convergence of the scheme, we show strong convergence of the hyperbolic variable, while convergence of the parabolic part is obtained only weakly* in 𝐋 . The proof relies on the fact that the hyperbolic flux depends on the parabolic variable through a convolution function. The paper also includes numerical examples that document the theoretically proved convergence and display the characteristic behaviour of the Lotka−Volterra equations.

Reçu le :
DOI : 10.1051/m2an/2015050
Classification : 65M12, 35M30
Mots clés : Numerical analysis, mixed systems of partial differential equations, coupled equations, Lax−Friedrichs method, finite difference schemes, nonlocal conservation laws
Rossi, Elena 1 ; Schleper, Veronika 2

1 University of Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy.
2 University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
@article{M2AN_2016__50_2_475_0,
     author = {Rossi, Elena and Schleper, Veronika},
     title = {Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {475--497},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {2},
     year = {2016},
     doi = {10.1051/m2an/2015050},
     mrnumber = {3482552},
     zbl = {1347.65145},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015050/}
}
TY  - JOUR
AU  - Rossi, Elena
AU  - Schleper, Veronika
TI  - Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 475
EP  - 497
VL  - 50
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015050/
DO  - 10.1051/m2an/2015050
LA  - en
ID  - M2AN_2016__50_2_475_0
ER  - 
%0 Journal Article
%A Rossi, Elena
%A Schleper, Veronika
%T Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 475-497
%V 50
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015050/
%R 10.1051/m2an/2015050
%G en
%F M2AN_2016__50_2_475_0
Rossi, Elena; Schleper, Veronika. Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 475-497. doi : 10.1051/m2an/2015050. http://www.numdam.org/articles/10.1051/m2an/2015050/

A. Aggarwal, R.M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. 53 (2015) 963–983. | DOI | MR | Zbl

P. Amorim, R.M. Colombo and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws. ESAIM: M2AN 49 (2015) 19–37. | DOI | Numdam | MR | Zbl

R. Arditi and L. Ginzburg, Coupling in predator-prey dynamics: ratio dependence. J. Theoret. Biol. 139 (1989) 311–326. | DOI

M.S. Bartlett. On theoretical models for competitive and predatory biological systems. Biometrika 44 (1957) 27–42. | DOI | MR | Zbl

G.I. Bell, Mathematical model of clonal selection and antibody production. J. Theoret. Biol. 29 (1970) 191–232. | DOI

C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. ESAIM: M2AN 33 (1999) 129–156. | DOI | Numdam | MR | Zbl

C. Chainais-Hillairet and S. Champier, Finite volume schemes for nonhomogeneous scalar conservation laws: error estimate. Numer. Math. 88 (2001) 607–639. | DOI | MR | Zbl

R.M. Colombo and E. Rossi, Hyperbolic predators vs. parabolic prey. Commun. Math. Sci. 13 (2015) 369–400. | DOI | MR | Zbl

M.G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws. Math. Comput. 34 (1980) 1–21. | DOI | MR | Zbl

C.M. Dafermos, Hyperbolic conservation laws in continuum physics. In vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 2nd edition. Springer-Verlag, Berlin (2005). | MR | Zbl

R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563–594. | DOI | MR | Zbl

R.M. Goodwin, A Growth Cycle. In Socialism, Capitalism and Economic Growth, edited by C.H. Feinstein. Cambridge University Press (1967) 54–59.

C.S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly. The Canadian Entomologist 91 (1959) 293–320. | DOI

K.H. Karlsen and J.D. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux. Chinese Ann. Math. Ser. B 25 (2004) 287–318. | DOI | MR | Zbl

A.J. Lotka, Elements of Physical Biology. Williams and Wilkins (1925). | JFM

G.H. Pimbley, Jr, Periodic solutions of predator-prey equations simulating an immune response. I. Math. Biosci. 20 (1974) 27–51. | DOI | MR | Zbl

V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. Acad. Lincei Roma 2 (1926) 31–113. | JFM

Cité par Sources :