Optimal control of the full time-dependent maxwell equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 1, pp. 237-261.

This paper analyzes the optimal control of the full time-dependent Maxwell equations. Our goal is to find an optimal current density and its time-dependent amplitude which steer the electric and magnetic fields to the desired ones. The main difficulty of the optimal control problem arises from the complexity of the Maxwell equations, featuring a first-order hyperbolic structure. We present a rigorous mathematical analysis for the optimal control problem. Here, the semigroup theory and the Helmholtz decomposition theory are the key tools in the analysis. Our theoretical findings include existence, strong regularity, and KKT theory. The corresponding optimality system consists of forward-backward Maxwell equations for the optimal electromagnetic and adjoint fields, magnetostatic saddle point equations for the optimal current density, and a projection formula for the optimal time-dependent amplitude. A semismooth Newton algorithm in a function space is established for solving the nonlinear and nonsmooth optimality system. The paper is concluded by numerical results, where mixed finite elements and Crank–Nicholson schema are used.

Reçu le :
DOI : 10.1051/m2an/2015041
Classification : 78A25, 35Q61, 49K20
Mots-clés : Optimal control, time-dependent Maxwell’s equations, strongly continuous semigroup, Helmholtz decomposition, semismooth Newton
Bommer, Vera 1 ; Yousept, Irwin 1

1 Universität Duisburg-Essen, Fakultät für Mathematik, Thea-Leymann-Str. 9, 45127 Essen, Germany.
@article{M2AN_2016__50_1_237_0,
     author = {Bommer, Vera and Yousept, Irwin},
     title = {Optimal control of the full time-dependent maxwell equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {237--261},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {1},
     year = {2016},
     doi = {10.1051/m2an/2015041},
     zbl = {1379.78005},
     mrnumber = {3460108},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015041/}
}
TY  - JOUR
AU  - Bommer, Vera
AU  - Yousept, Irwin
TI  - Optimal control of the full time-dependent maxwell equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 237
EP  - 261
VL  - 50
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015041/
DO  - 10.1051/m2an/2015041
LA  - en
ID  - M2AN_2016__50_1_237_0
ER  - 
%0 Journal Article
%A Bommer, Vera
%A Yousept, Irwin
%T Optimal control of the full time-dependent maxwell equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 237-261
%V 50
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015041/
%R 10.1051/m2an/2015041
%G en
%F M2AN_2016__50_1_237_0
Bommer, Vera; Yousept, Irwin. Optimal control of the full time-dependent maxwell equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 1, pp. 237-261. doi : 10.1051/m2an/2015041. http://www.numdam.org/articles/10.1051/m2an/2015041/

A. Alonso and A. Valli, Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications. Springer (2010). | MR | Zbl

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. | DOI | MR | Zbl

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974) 129–151. | Numdam | MR | Zbl

P. Ciarlet, Jr. and J. Zou, Fully discrete finite element approaches for time-dependent Maxwell’s equations. Numer. Math. 82 (1999) 193–219. | DOI | MR | Zbl

M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12 (1990) 365–368. | DOI | MR | Zbl

M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 2000 221–276. | DOI | MR | Zbl

M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627–649. | DOI | Numdam | MR | Zbl

P-E. Druet, O. Klein, J. Sprekels, F. Tröltzsch and I. Yousept, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects. SIAM J. Control Optim. 49 (2011) 1707–1736. | DOI | MR | Zbl

V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986). | MR | Zbl

M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2003) 865–888. | DOI | MR | Zbl

M. Hintermüller, A. Laurain I. Yousept, Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model. Inverse Problems 31 (2015) 065006. | DOI | MR | Zbl

R.H.W. Hoppe and I. Yousept, Adaptive edge element approximation ofH(curl)-elliptic optimal control problems with control constraints. BIT 55 (2015) 255–277. | DOI | MR

M. Kolmbauer and U. Langer, A robust preconditioned minres solver for distributed time-periodic eddy current optimal control problems. SIAM J. Scientific Comput. 34 (2012) B785–B809. | DOI | MR | Zbl

M. Kolmbauer and U. Langer, Efficient solvers for some classes of time-periodic eddy current optimal control problems. In vol. 45 of Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, edited by O.P. Iliev, S.D. Margenov, P.D Minev, P.S. Vassilevski and L.T Zikatanov. Springer New York (2013) 203–216. | MR | Zbl

J.E. Lagnese and G. Leugering, Time domain decomposition in final value optimal control of the Maxwell system. A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 775–799. | Numdam | MR | Zbl

R. Leis, Initial-boundary value problems in mathematical physics. B.G. Teubner, Stuttgart (1986). | MR | Zbl

A. Logg, K.-A. Mardal, and G.N. Wells, Automated Solution of Differential Equations by the Finite Element Method. Springer, Boston (2012). | Zbl

P. Monk, An analysis of a mixed method for approximating Maxwell’s equations. SIAM J. Numer. Anal. 28 (1991) 1610–1634. | DOI | MR | Zbl

P. Monk, Finite element methods for Maxwell’s equations. Clarendon Press, Oxford (2003). | MR | Zbl

J.C. Nédélec, Mixed finite elements in R 3 . Numer. Math. 35 (1980) 315–341. | DOI | MR | Zbl

S. Nicaise, S. Stingelin and F. Tröltzsch, On two optimal control problems for magnetic fields. Comput. Methods Appl. Math. 14 (2014) 555–573. | DOI | MR | Zbl

S. Nicaise, S. Stingelin and F. Tröltzsch, Optimal control of magnetic fields in flow measurement. Discrete Contin. Dyn. Systems 8 (2015) 579–605. | DOI | MR | Zbl

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). | MR | Zbl

R. Picard, On the boundary value problems of electro- and magnetostatics. Proc. Roy. Soc. Edinburgh, Sect. A Math. 92 (1982) 165–174. | DOI | MR | Zbl

F. Tröltzsch, Optimal Control of Partial Differential Equations, Vol. 112 of Grad. Stud. Math. American Mathematical Society, Providence, RI (2010). | MR | Zbl

F. Tröltzsch and I. Yousept, PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages. ESAIM: M2AN 46 (2012) 709–729. | DOI | Numdam | MR | Zbl

M. Ulbrich, Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13 (2003) 805–842. | DOI | MR | Zbl

N. Weck, Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries. J. Math. Anal. Appl. 46 (1974) 410–437. | DOI | MR | Zbl

N. Weck, Exact boundary controllability of a Maxwell problem. SIAM J. Control Optim. 38 (2000) 736–750. | DOI | MR | Zbl

I. Yousept, Optimal bilinear control of eddy current equations with grad-div regularization. J. Numer. Math. 23 (2015) 81–98. | DOI | MR | Zbl

I. Yousept, Optimal control of a nonlinear coupled electromagnetic induction heating system with pointwise state constraints. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2 (2010) 45–77. | MR | Zbl

I. Yousept. Finite element analysis of an optimal control problem in the coefficients of time-harmonic Eddy current equations. J. Optim. Theory Appl. 154 (2012) 879–903. | DOI | MR | Zbl

I. Yousept, Optimal control of Maxwell’s equations with regularized state constraints. Comput. Optim. Appl. 52 (2012) 559–581. | DOI | MR | Zbl

I. Yousept, Optimal control of quasilinear 𝐇(𝐜𝐮𝐫𝐥)-elliptic partial differential equations in magnetostatic field problems. SIAM J. Control Optim. 51 (2013) 3624–3651. | DOI | MR | Zbl

Cité par Sources :