We revisit the duality theorem for multimarginal optimal transportation problems. In particular, we focus on the Coulomb cost. We use a discrete approximation to prove equality of the extremal values and some careful estimates of the approximating sequence to prove existence of maximizers for the dual problem (Kantorovich’s potentials). Finally we observe that the same strategy can be applied to a more general class of costs and that a classical results on the topic cannot be applied here.
DOI : 10.1051/m2an/2015035
Mots clés : Multimarginal optimal transportation, Monge−Kantorovich problem, duality theory, Coulomb cost
@article{M2AN_2015__49_6_1643_0, author = {De Pascale, Luigi}, title = {Optimal transport with {Coulomb} cost. {Approximation} and duality}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1643--1657}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015035}, zbl = {1330.49048}, mrnumber = {3423269}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2015035/} }
TY - JOUR AU - De Pascale, Luigi TI - Optimal transport with Coulomb cost. Approximation and duality JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1643 EP - 1657 VL - 49 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2015035/ DO - 10.1051/m2an/2015035 LA - en ID - M2AN_2015__49_6_1643_0 ER -
%0 Journal Article %A De Pascale, Luigi %T Optimal transport with Coulomb cost. Approximation and duality %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1643-1657 %V 49 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2015035/ %R 10.1051/m2an/2015035 %G en %F M2AN_2015__49_6_1643_0
De Pascale, Luigi. Optimal transport with Coulomb cost. Approximation and duality. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 6, pp. 1643-1657. doi : 10.1051/m2an/2015035. http://www.numdam.org/articles/10.1051/m2an/2015035/
A general duality theorem for the monge–kantorovich transport problem. Stud. Math. 209 (2012) 2. | DOI | MR | Zbl
, and ,A. Braides, Gamma-convergence for Beginners. Vol. 22. Oxford University Press, Oxford (2002). | MR | Zbl
Optimal-transport formulation of electronic density-functional theory. Phys. Rev. A 85 (2012) 062502. | DOI
, and ,On a class of multidimensional optimal transportation problems. J. Convex Anal. 10 (2003) 517–530. | MR | Zbl
,Optimal transportation for the determinant. ESAIM: COCV 14 (2008) 678–698. | Numdam | MR | Zbl
and ,M. Colombo, L. De Pascale and S. Di Marino, Multimarginal optimal transport maps for 1-dimensional repulsive costs. Canad. J. Math. (2013). | MR
M. Colombo and S. Di Marino, Equality between monge and kantorovich multimarginal problems with coulomb cost. Ann. Mat. Pura Appl. (2013) 1–14. | MR
Density functional theory and optimal transportation with coulomb cost. Commun. Pure Appl. Math. 66 (2013) 548–599. | DOI | MR | Zbl
, and ,G. Dal Maso, An introduction to -convergence. Springer (1993). | MR | Zbl
N-density representability and the optimal transport limit of the hohenberg−kohn functional. J. Chem. Phys. 139 (2013) 164–109. | DOI
, , , and ,Optimal maps for the multidimensional monge−kantorovich problem. Comm. Pure Appl. Math. 51 (1998) 23–45. | DOI | MR | Zbl
and ,A self-dual polar factorization for vector fields. Comm. Pure Appl. Math. 66 (2013) 905–933. | DOI | MR | Zbl
and ,Density functional theory for strongly-interacting electrons: perspectives for physics and chemistry. Phys. Chem. Chem. Phys. 12 (2010) 14405–14419. | DOI
and ,Density-functional theory for strongly interacting electrons. Phys. Rev. Lett. 103 (2009) 166402. | DOI
, and ,Problème de monge pour n probabilités. C. R. Math. 334 (2002) 793–795. | DOI | MR | Zbl
,Inhomogeneous electron gas. Phys. Rev. 136 (1964) B864. | DOI | MR
and ,Duality theorems for marginal problems. Probab. Theory Relat. Fields 67 (1984) 399–432. | MR | Zbl
,Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133. | DOI | MR
and ,Density functionals for coulomb systems. Int J. Quantum Chem. 24 (1983) 243–277. | DOI
.Kantorovich dual solution for strictly correlated electrons in atoms and molecules. Phys. Rev. B 87 (2013) 125106. | DOI
and ,Uniqueness and monge solutions in the multimarginal optimal transportation problem. SIAM J. Math. Anal. 43 (2011) 2758–2775. | DOI | MR | Zbl
,On the local structure of optimal measures in the multi-marginal optimal transportation problem. Calc. Var. Partial Differ. Equ. 43 (2012) 529–536. | DOI | MR | Zbl
,S.T. Rachev and L. Rüschendorf, Mass transportation problems. Probab. Appl. Springer-Verlag (1998), Vol. I. | MR
Strong-interaction limit of density-functional theory. Phys. Rev. A 60 (1999) 4387. | DOI
,Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities. Phys. Rev. A 75 (2007) 042511. | DOI
, and ,Strictly correlated electrons in density-functional theory. Phys. Rev. A 59 (1999) 51. | DOI
, and ,Cité par Sources :