Optimal regions for congested transport
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 6, pp. 1607-1619.

We consider a given region Ω where the traffic flows according to two regimes: in a region C we have a low congestion, where in the remaining part ΩC the congestion is higher. The two congestion functions H 1 and H 2 are given, but the region C has to be determined in an optimal way in order to minimize the total transportation cost. Various penalization terms on C are considered and some numerical computations are shown.

Reçu le :
DOI : 10.1051/m2an/2015022
Classification : 49Q20, 49Q10, 90B20
Mots clés : Shape optimization, transport problems, congestion effects, optimal networks
Buttazzo, Giuseppe 1 ; Carlier, Guillaume 2 ; Lo Bianco, Serena Guarino 1

1 Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56126 Pisa, Italy.
2 CEREMADE UMR CNRS 7534, Université de Paris Dauphine, Pl. de Lattre de Tassigny, 75775 Paris cedex 16, France.
@article{M2AN_2015__49_6_1607_0,
     author = {Buttazzo, Giuseppe and Carlier, Guillaume and Lo Bianco, Serena Guarino},
     title = {Optimal regions for congested transport},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1607--1619},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {6},
     year = {2015},
     doi = {10.1051/m2an/2015022},
     mrnumber = {3423267},
     zbl = {1330.49047},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015022/}
}
TY  - JOUR
AU  - Buttazzo, Giuseppe
AU  - Carlier, Guillaume
AU  - Lo Bianco, Serena Guarino
TI  - Optimal regions for congested transport
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1607
EP  - 1619
VL  - 49
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015022/
DO  - 10.1051/m2an/2015022
LA  - en
ID  - M2AN_2015__49_6_1607_0
ER  - 
%0 Journal Article
%A Buttazzo, Giuseppe
%A Carlier, Guillaume
%A Lo Bianco, Serena Guarino
%T Optimal regions for congested transport
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1607-1619
%V 49
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015022/
%R 10.1051/m2an/2015022
%G en
%F M2AN_2015__49_6_1607_0
Buttazzo, Giuseppe; Carlier, Guillaume; Lo Bianco, Serena Guarino. Optimal regions for congested transport. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 6, pp. 1607-1619. doi : 10.1051/m2an/2015022. http://www.numdam.org/articles/10.1051/m2an/2015022/

G. Allaire, Shape Optimization by the Homogenization Method. Springer Verlag, New York (2002). | MR | Zbl

O. Alvarez, P. Cardaliaguet and R. Monneau, Existence and uniqueness for dislocation dynamics with nonnegative velocity. Interfaces and Free Boundaries 7 (2005) 415–434. | DOI | MR | Zbl

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000). | MR | Zbl

M. Beckmann, A continuous model of transportation. Econometrica 20 (1952) 643–660. | DOI | MR | Zbl

A. Braides, Relaxation of functionals with constraint on the divergence. Ann. Univ. Ferrara 33 (1987) 157–177. | DOI | MR | Zbl

A. Braides, B. Cassano, A. Garroni and D. Sarrocco, Evolution of damage in composites: the one-dimensional case. Preprint (2013). Avalaible at http://cvgmt.sns.it.

L. Brasco and G. Carlier, On certain anisotropic elliptic equation arising in congested optimal transport: local gradient bounds. Adv. Calc. Var. (to appear). | MR | Zbl

L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures Appl. 93 (6) (2010) 652–671. | DOI | MR | Zbl

D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems. Vol. 65 of Progress Nonlin. Differ. Equ. Birkhäuser Verlag, Basel (2005). | MR | Zbl

G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Vol. 207 of Pitman Res. Notes Math. Ser. Longman, Harlow (1989). | MR | Zbl

G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions. In Variational Methods for Discontinuous Structures, Cernobbio 2001. Vol. 51 of Progr. Nonlin. Differ. Equ. Birkhäuser Verlag, Basel (2002) 41–65. | MR | Zbl

G. Buttazzo, A. Pratelli, S. Solimini and E. Stepanov, Optimal urban networks via mass transportation. In vol. 1961 of Lect. Notes Math. Springer-Verlag, Berlin (2009). | MR | Zbl

G. Buttazzo, F. Santambrogio and E. Stepanov, Asymptotic optimal location of facilities in a competition between population and industries. Ann. Sc. Norm. Super. Pisa Cl. Sci. 12 (2013) 239–273. | Numdam | MR | Zbl

G. Carlier, C. Jimenez and F. Santambrogio, Optimal transportation with traffic congestion and Wardrop equilibria. SIAM J. Control Optim. 47 (2008) 1330–1350. | DOI | MR | Zbl

A. Henrot and M. Pierre, Variation et Optimisation de Formes. Une Analyse Géométrique. Vol. 48 of Math. Appl. Springer-Verlag, Berlin (2005). | MR | Zbl

A. Lemenant, A presentation of the average distance minimizing problem. J. Math. Sci. 181 (2012) 820–836. | DOI | MR | Zbl

C.T. Kelley, Iterative methods for optimization. Soc. Indus. Appl. Math. SIAM, Philadelphia (1999). | MR | Zbl

J.G. Wardrop, Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 2 (1952) 325–378.

Cité par Sources :