We consider the problem of optimally locating a given number of points in for an integral cost function which takes into account two measures and . The points represent for example new industrial facilities that have to be located, the measure representing in this case already existing industries that want to be close to the new ones, and representing private citizens who want to stay far away. The asymptotic analysis as is performed, providing the asymptotic density of optimal locations.
@article{ASNSP_2013_5_12_1_239_0, author = {Buttazzo, Giuseppe and Santambrogio, Filippo and Stepanov, Eugene}, title = {Asymptotic optimal location of facilities in a competition between population and industries}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {239--273}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {1}, year = {2013}, mrnumber = {3088443}, zbl = {1264.49047}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2013_5_12_1_239_0/} }
TY - JOUR AU - Buttazzo, Giuseppe AU - Santambrogio, Filippo AU - Stepanov, Eugene TI - Asymptotic optimal location of facilities in a competition between population and industries JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 239 EP - 273 VL - 12 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2013_5_12_1_239_0/ LA - en ID - ASNSP_2013_5_12_1_239_0 ER -
%0 Journal Article %A Buttazzo, Giuseppe %A Santambrogio, Filippo %A Stepanov, Eugene %T Asymptotic optimal location of facilities in a competition between population and industries %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 239-273 %V 12 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2013_5_12_1_239_0/ %G en %F ASNSP_2013_5_12_1_239_0
Buttazzo, Giuseppe; Santambrogio, Filippo; Stepanov, Eugene. Asymptotic optimal location of facilities in a competition between population and industries. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 239-273. http://www.numdam.org/item/ASNSP_2013_5_12_1_239_0/
[1] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. | MR | Zbl
[2] L. Ambrosio and C. Mantegazza, Curvature and distance function from a manifold, J. Geom. Anal. 8 (1998), 723–748. Dedicated to the memory of Fred Almgren. | MR | Zbl
[3] L. Ambrosio and P. Tilli, “Topics on Analysis in Metric Spaces”, Vol. 25, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004. | MR | Zbl
[4] G. Bouchitté, C. Jimenez and R. Mahadevan, Asymptotic analysis of a class of optimal location problems, J. Math. Pures Appl. 95 (2011), 382–419. | MR | Zbl
[5] G. Bouchitté, C. Jimenez and R. Mahadevan, Asymptotique d’un problème de positionnement optimal, C. R. Math. Acad. Sci. Paris 335 (2002), 853–858. | MR | Zbl
[6] A. Brancolini, G. Buttazzo, F. Santambrogio and E. Stepanov, Long-term planning versus short-term planning in the asymptotical location problem, ESAIM Control Optim. Calc. Var. 15 (2009), 509–524. | EuDML | Numdam | MR | Zbl
[7] G. Buttazzo, Optimization problems in mass transportation theory, Boll. Unione Mat. Ital. 1 (2008), 401–427. | MR | Zbl
[8] P. Cohort, Limit theorems for random normalized distortion, Ann. Appl. Probab. 14 (2004), 118–143. | MR | Zbl
[9] G. Dal Maso, “An Introduction to -convergence”, Birkhäuser, Basel, 1992. | MR | Zbl
[10] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 842–850. | MR | Zbl
[11] S. P. Fekete, J. S. B. Mitchell and K. Beurer, On the continuous Fermat-Weber problem, Oper. Res. 53 (2005), 61–76. | MR | Zbl
[12] S. Graf and H. Luschgy, “Foundations of Quantization for Probability Distributions”, Vol. 1730, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000. | MR | Zbl
[13] D. Liberzon, “Switching in Systems and Control”, Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA, 2003. | MR | Zbl
[14] C. Mantegazza and A. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds, Appl. Math. Optim. 47 (2003), 1–25. | MR | Zbl
[15] F. Morgan and R. Bolton, Hexagonal economic regions solve the location problem, Amer. Math. Monthly 109 (2002), 165–172. | MR | Zbl
[16] S. J. N. Mosconi and P. Tilli, -convergence for the irrigation problem, J. Convex Anal. 12 (2005), 145–158. | MR | Zbl
[17] A. Suzuki and Z. Drezner, The -center location, Location Science 4 (1996), 69–82. | Zbl
[18] A. Suzuki and A. Okabe, Using Voronoi diagrams, In: “Facility Location: a Survey of Applications and Methods”, Z. Drezner (ed.), Springer Series in Operations Research, 103–118, Springer Verlag, 1995. | MR
[19] A. Weber, “ Über den Standort der Industrien, Erster Teil: Reine Theorie des Standortes”, Mohr, Tübingen, 1909.