We consider a given region where the traffic flows according to two regimes: in a region we have a low congestion, where in the remaining part the congestion is higher. The two congestion functions and are given, but the region has to be determined in an optimal way in order to minimize the total transportation cost. Various penalization terms on are considered and some numerical computations are shown.
DOI : 10.1051/m2an/2015022
Mots clés : Shape optimization, transport problems, congestion effects, optimal networks
@article{M2AN_2015__49_6_1607_0, author = {Buttazzo, Giuseppe and Carlier, Guillaume and Lo Bianco, Serena Guarino}, title = {Optimal regions for congested transport}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1607--1619}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015022}, mrnumber = {3423267}, zbl = {1330.49047}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2015022/} }
TY - JOUR AU - Buttazzo, Giuseppe AU - Carlier, Guillaume AU - Lo Bianco, Serena Guarino TI - Optimal regions for congested transport JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1607 EP - 1619 VL - 49 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2015022/ DO - 10.1051/m2an/2015022 LA - en ID - M2AN_2015__49_6_1607_0 ER -
%0 Journal Article %A Buttazzo, Giuseppe %A Carlier, Guillaume %A Lo Bianco, Serena Guarino %T Optimal regions for congested transport %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1607-1619 %V 49 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2015022/ %R 10.1051/m2an/2015022 %G en %F M2AN_2015__49_6_1607_0
Buttazzo, Giuseppe; Carlier, Guillaume; Lo Bianco, Serena Guarino. Optimal regions for congested transport. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 6, pp. 1607-1619. doi : 10.1051/m2an/2015022. http://www.numdam.org/articles/10.1051/m2an/2015022/
G. Allaire, Shape Optimization by the Homogenization Method. Springer Verlag, New York (2002). | MR | Zbl
Existence and uniqueness for dislocation dynamics with nonnegative velocity. Interfaces and Free Boundaries 7 (2005) 415–434. | DOI | MR | Zbl
, and ,L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000). | MR | Zbl
A continuous model of transportation. Econometrica 20 (1952) 643–660. | DOI | MR | Zbl
,Relaxation of functionals with constraint on the divergence. Ann. Univ. Ferrara 33 (1987) 157–177. | DOI | MR | Zbl
,A. Braides, B. Cassano, A. Garroni and D. Sarrocco, Evolution of damage in composites: the one-dimensional case. Preprint (2013). Avalaible at http://cvgmt.sns.it.
L. Brasco and G. Carlier, On certain anisotropic elliptic equation arising in congested optimal transport: local gradient bounds. Adv. Calc. Var. (to appear). | MR | Zbl
Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures Appl. 93 (6) (2010) 652–671. | DOI | MR | Zbl
, and ,D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems. Vol. 65 of Progress Nonlin. Differ. Equ. Birkhäuser Verlag, Basel (2005). | MR | Zbl
G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Vol. 207 of Pitman Res. Notes Math. Ser. Longman, Harlow (1989). | MR | Zbl
G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions. In Variational Methods for Discontinuous Structures, Cernobbio 2001. Vol. 51 of Progr. Nonlin. Differ. Equ. Birkhäuser Verlag, Basel (2002) 41–65. | MR | Zbl
G. Buttazzo, A. Pratelli, S. Solimini and E. Stepanov, Optimal urban networks via mass transportation. In vol. 1961 of Lect. Notes Math. Springer-Verlag, Berlin (2009). | MR | Zbl
Asymptotic optimal location of facilities in a competition between population and industries. Ann. Sc. Norm. Super. Pisa Cl. Sci. 12 (2013) 239–273. | Numdam | MR | Zbl
, and ,Optimal transportation with traffic congestion and Wardrop equilibria. SIAM J. Control Optim. 47 (2008) 1330–1350. | DOI | MR | Zbl
, and ,A. Henrot and M. Pierre, Variation et Optimisation de Formes. Une Analyse Géométrique. Vol. 48 of Math. Appl. Springer-Verlag, Berlin (2005). | MR | Zbl
A presentation of the average distance minimizing problem. J. Math. Sci. 181 (2012) 820–836. | DOI | MR | Zbl
,C.T. Kelley, Iterative methods for optimization. Soc. Indus. Appl. Math. SIAM, Philadelphia (1999). | MR | Zbl
Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 2 (1952) 325–378.
,Cité par Sources :