We present the analysis for the higher order continuous Galerkin−Petrov (cGP) time discretization schemes in combination with the one-level local projection stabilization in space applied to time-dependent convection-diffusion-reaction problems. Optimal a priori error estimates will be proved. Numerical studies support the theoretical results. Furthermore, a numerical comparison between continuous Galerkin−Petrov and discontinuous Galerkin time discretization schemes will be given.
DOI : 10.1051/m2an/2015019
Mots-clés : Transient convection-diffusion-reaction problem, local projection stabilization, continuous Galerkin−Petrov method, discontinuous Galerkin method
@article{M2AN_2015__49_5_1429_0, author = {Ahmed, Naveed and Matthies, Gunar}, title = {Higher order continuous {Galerkin\ensuremath{-}Petrov} time stepping schemes for transient convection-diffusion-reaction equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1429--1450}, publisher = {EDP-Sciences}, volume = {49}, number = {5}, year = {2015}, doi = {10.1051/m2an/2015019}, mrnumber = {3423230}, zbl = {1342.65184}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2015019/} }
TY - JOUR AU - Ahmed, Naveed AU - Matthies, Gunar TI - Higher order continuous Galerkin−Petrov time stepping schemes for transient convection-diffusion-reaction equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1429 EP - 1450 VL - 49 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2015019/ DO - 10.1051/m2an/2015019 LA - en ID - M2AN_2015__49_5_1429_0 ER -
%0 Journal Article %A Ahmed, Naveed %A Matthies, Gunar %T Higher order continuous Galerkin−Petrov time stepping schemes for transient convection-diffusion-reaction equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1429-1450 %V 49 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2015019/ %R 10.1051/m2an/2015019 %G en %F M2AN_2015__49_5_1429_0
Ahmed, Naveed; Matthies, Gunar. Higher order continuous Galerkin−Petrov time stepping schemes for transient convection-diffusion-reaction equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1429-1450. doi : 10.1051/m2an/2015019. http://www.numdam.org/articles/10.1051/m2an/2015019/
N. Ahmed and G. Matthies, Numerical study of SUPG and LPS methods combined with higher order variational time disretization schemes applied to time-dependent convection-diffusion-reaction equations. Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin (2014). Preprint 1948. | MR
Discontinuous galerkin time stepping with local projection stabilization for transient convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg. 200 (2011) 1747–1756. | DOI | MR | Zbl
, , and ,Continuous finite elements in space and time for the heat equation. Math. Comput. 52 (1989) 255–274. | DOI | MR | Zbl
and ,A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173–199. | DOI | MR | Zbl
and ,R. Becker and M. Braack, A two-level stabilization scheme for the Navier-Stokes equations. In Numer. Math. Advanced Appl. Springer, Berlin (2004) 123–130. | MR | Zbl
Stability of the SUPG finite element method for transient advection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 2301–2323. | DOI | MR | Zbl
, and ,Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2006) 2544–2566. | DOI | MR | Zbl
and ,Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1114–1123. | DOI | MR | Zbl
,Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2508–2519. | DOI | MR | Zbl
and ,P.G. Ciarlet, The finite element method for elliptic problems. Vol. 4 of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam (1978). | MR | Zbl
Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Engrg. 156 (1998) 185–210. | DOI | MR | Zbl
,K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Computational differential equations. Cambridge University Press, Cambridge (1996). | MR | Zbl
Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO: M2AN 19 (1985) 611–643. | Numdam | MR | Zbl
, and ,Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput. Methods Appl. Mech. Engrg. 199 (2010) 828–840. | DOI | MR | Zbl
, , , and ,T.J.R. Hughes and A.N. Brooks, A multidimensional upwind scheme with no crosswind diffusion. In Finite element methods for convection dominated flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979). Vol. 34 of AMD. Amer. Soc. Mech. Engrs. (ASME). New York (1979) 19–35. | MR | Zbl
Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation. J. Numer. Math. 19 (2011) 41–61. | DOI | MR | Zbl
, and ,A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations. Open Numer. Methods J. 4 (2012) 35–45. | DOI | MR | Zbl
, and ,On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. I. A review. Comput. Methods Appl. Mech. Engrg. 196 (2007) 2197–2215. | DOI | MR | Zbl
and ,On the performance of SOLD methods for convection-diffusion problems with interior layers. Int. J. Comput. Sci. Math. 1 (2007) 245–258. | DOI | MR | Zbl
and ,On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. II. Analysis for and finite elements. Comput. Methods Appl. Mech. Engrg. 197 (2008) 1997–2014. | DOI | MR | Zbl
and ,MooNMD − a program package based on mapped finite element methods. Comput. Vis. Sci. 6 (2004) 163–169. | DOI | Zbl
and ,Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations. SIAM J. Numer. Anal. 49 (2011) 1149–1176. | DOI | Zbl
and ,Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Engrg. 198 (2008) 475–494. | DOI | Zbl
and ,P. Knobloch, On the application of local projection methods to convection-diffusion-reaction problems. In BAIL 2008 – boundary and interior layers. Vol. 69 of Lect. Notes Comput. Sci. Eng. Springer, Berlin (2009) 183–194. | Zbl
A generalization of the local projection stabilization for convection-diffusion-reaction equations. SIAM J. Numer. Anal. 48 (2010) 659–680. | DOI | Zbl
,Stabilized finite element methods for singularly perturbed parabolic problems. Appl. Numer. Math. 17 (1995) 431–459. | DOI | Zbl
and ,G. Matthies and F. Schieweck, Higher order variational time discretizations for nonlinear systems of ordinary differential equations. Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2011). Preprint 23/2011.
A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESAIM: M2AN 41 (2007) 713–742. | DOI | Zbl
, and ,Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. Electron. Trans. Numer. Anal. 32 (2008) 90–105. | Zbl
, and ,W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientic Laboratory (1973).
H.-G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems. In vol. 24 of Springer Ser. Comput. Math. Springer-Verlag, Berlin, 2nd edition (2008). | Zbl
-stable discontinuous Galerkin-Petrov time discretization of higher order. J. Numer. Math. 18 (2010) 25–57. | DOI | Zbl
.An a priori error analysis of the DG time-stepping method for initial value problems. Calcolo, 37 (2000) 207–232. | DOI | Zbl
and ,-discontinuous Galerkin time-stepping for parabolic problems. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 1121–1126. | DOI | Zbl
and ,V. Thomée, Galerkin finite element methods for parabolic problems. In vol. 25 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (1997).
Cité par Sources :