This paper is devoted to the numerical analysis of an augmented finite element approximation of the axisymmetric Brinkman equations. Stabilization of the variational formulation is achieved by adding suitable Galerkin least-squares terms, allowing us to transform the original problem into a formulation better suited for performing its stability analysis. The sought quantities (here velocity, vorticity, and pressure) are approximated by Raviart−Thomas elements of arbitrary order , piecewise continuous polynomials of degree , and piecewise polynomials of degree , respectively. The well-posedness of the resulting continuous and discrete variational problems is rigorously derived by virtue of the classical Babuška–Brezzi theory. We further establish a priori error estimates in the natural norms, and we provide a few numerical tests illustrating the behavior of the proposed augmented scheme and confirming our theoretical findings regarding optimal convergence of the approximate solutions.
DOI : 10.1051/m2an/2015011
Mots clés : Brinkman equations, axisymmetric domains, augmented mixed finite elements, well-posedness analysis, error estimates
@article{M2AN_2015__49_3_855_0, author = {Anaya, Ver\'onica and Mora, David and Reales, Carlos and Ruiz-Baier, Ricardo}, title = {Stabilized mixed approximation of axisymmetric {Brinkman} flows}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {855--874}, publisher = {EDP-Sciences}, volume = {49}, number = {3}, year = {2015}, doi = {10.1051/m2an/2015011}, mrnumber = {3342231}, zbl = {1329.76158}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2015011/} }
TY - JOUR AU - Anaya, Verónica AU - Mora, David AU - Reales, Carlos AU - Ruiz-Baier, Ricardo TI - Stabilized mixed approximation of axisymmetric Brinkman flows JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 855 EP - 874 VL - 49 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2015011/ DO - 10.1051/m2an/2015011 LA - en ID - M2AN_2015__49_3_855_0 ER -
%0 Journal Article %A Anaya, Verónica %A Mora, David %A Reales, Carlos %A Ruiz-Baier, Ricardo %T Stabilized mixed approximation of axisymmetric Brinkman flows %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 855-874 %V 49 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2015011/ %R 10.1051/m2an/2015011 %G en %F M2AN_2015__49_3_855_0
Anaya, Verónica; Mora, David; Reales, Carlos; Ruiz-Baier, Ricardo. Stabilized mixed approximation of axisymmetric Brinkman flows. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 855-874. doi : 10.1051/m2an/2015011. http://www.numdam.org/articles/10.1051/m2an/2015011/
A new formulation of the Stokes problem in a cylinder, and its spectral discretization. ESAIM: M2AN 38 (2004) 781–810. | DOI | Numdam | MR | Zbl
and ,Spectral discretization of the axisymmetric vorticity, velocity and pressure formulation of the Stokes problem. J. Sci. Comput. 47 (2011) 419–440. | DOI | MR | Zbl
, and ,Mixed finite element approximation for a coupled petroleum reservoir model. ESAIM: M2AN 39 (2005) 349–376. | DOI | Numdam | MR | Zbl
, , and ,An augmented mixed finite element method for the vorticity-velocity-pressure formulation of the Stokes equations. Comput. Methods Appl. Mech. Engrg. 267 (2013) 261–274. | DOI | MR | Zbl
, and ,V. Anaya, D. Mora, G.N. Gatica and R. Ruiz-Baier, An augmented velocity-vorticity-pressure formulation for the Brinkman problem. To appear in Int. J. Numer. Methods Fluids (2015). | MR
V. Anaya, D. Mora, R. Oyarzúa and R. Ruiz-Baier, A priori and a posteriori error analysis for a vorticity-based mixed formulation of the generalized Stokes equations. CIMA preprint 2014-20. Available from http://www.ci2ma.udec.cl/publicaciones/prepublicaciones.
Mortar spectral element discretization of the Stokes problem in axisymmetric domains. Numer. Methods Partial Differ. Eq. 30 (2014) 44–73. | DOI | MR | Zbl
, and ,Theoretical tools to solve the axisymmetric Maxwell equations. Math. Methods Appl. Sci. 25 (2002) 49–78. | DOI | MR | Zbl
, and ,Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method. J. Comput. Phys. 191 (2003) 147–176. | DOI | MR | Zbl
, , and ,A spectral element projection scheme for incompressible flow with application to the unsteady axisymmetric Stokes problem. J. Sci. Comput. 17 (2002) 573–584. | DOI | MR | Zbl
,An unusual stabilized finite element method for a generalized Stokes problem. Numer. Math. 92 (2002) 653–677. | DOI | MR | Zbl
and ,On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: a priori error estimates. Comput. Methods Appl. Mech. Engrg. 237/240 (2012) 78–87. | DOI | MR | Zbl
, , and ,Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math. 105 (2002) 217–247. | DOI | MR | Zbl
, and ,An efficient discretization of the Navier-Stokes equations in an axisymmetric domain. Part 1: The discrete problem and its numerical analysis. J. Sci. Comput. 27 (2006) 97–110. | DOI | MR | Zbl
, , and ,Numerical analysis of a finite element method for the axisymmetric eddy current model of an induction furnace. IMA J. Numer. Anal. 30 (2010) 654–676. | DOI | MR | Zbl
, , and ,Mathematical and numerical analysis of a transient eddy current axisymmetric problem involving velocity terms. Numer. Methods Partial Differ. Eq. 28 (2012) 984–1012. | DOI | MR
, , and ,Spectral discretization of the vorticity, velocity, and pressure formulation of the Stokes problem. SIAM J. Numer. Anal. 44 (2007) 826–850. | DOI | MR | Zbl
and ,C. Bernardi, M. Dauge and Y. Maday,Spectral Methods for Axisymmetric Domains. Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris (1999). | MR | Zbl
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag, New York (1991). | MR | Zbl
R. Bürger, S. Kumar and R. Ruiz-Baier, Discontinuous finite volume element approximation for a fully coupled Stokes flow-transport problem. CIMA preprint 2014-25. Available from http://www.ci2ma.udec.cl/publicaciones/prepublicaciones. | MR
A stabilized finite volume element formulation for sedimentation–consolidation processes. SIAM J. Sci. Comput. 34 (2012) B265–B289. | DOI | MR | Zbl
, and ,A stable finite element method for the axisymmetric three-field Stokes system. Comput. Methods Appl. Mech. Engrg. 164 (1998) 267–286. | DOI | MR | Zbl
and ,Approximation by finite element functions using local regularisation. RAIRO Modél. Math. Anal. Numér. 9 (1975) 77–84. | Numdam | MR | Zbl
,Multigrid in a weighted space arising from axisymmetric electromagnetics. Math. Comput. 79 (2010) 2033–2058. | DOI | MR | Zbl
, and ,Approximation of axisymmetric Darcy flow using mixed finite element methods. SIAM J. Numer. Anal. 51 (2013) 1421–1442. | DOI | MR | Zbl
,Approximation of coupled Stokes-Darcy flow in an axisymmetric domain. Comput. Methods Appl. Mech. Engrg. 258 (2013) 96–108. | DOI | MR | Zbl
,G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. Springer Briefs in Mathematics. Springer, Cham, Heidelberg, New York, Dordrecht London (2014). | MR | Zbl
Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media. Comput. Methods Appl. Mech. Engrg. 270 (2014) 76–112. | DOI | MR | Zbl
, , and ,Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126 (2014) 635–677. | DOI | MR | Zbl
, and ,Commuting smoothed projectors in weighted norms with an application to axisymmetric Maxwell equations. J. Sci. Comput. 51 (2012) 394–420. | DOI | MR | Zbl
and ,The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations. Math. Comput. 75 (2006) 1697–1719. | DOI | MR | Zbl
and ,Numerical computation of 3D incompressible ideal fluids with swirl. Phys. Rev. Lett. 67 (1991) 3511–3514. | DOI
and ,Finite element/volume solution to axisymmetric conservation laws. J. Comput. Phys. 224 (2007) 489–518. | DOI | MR | Zbl
and ,Numerical computations with finite elements for the Brinkman problem. Comput. Geosci. 16 (2012) 139–158. | DOI | MR | Zbl
and ,A. Kufner, Weighted Sobolev Spaces. Wiley, New York (1983). | MR | Zbl
Solution of Maxwell equation in axisymmetric geometry by Fourier series decomposition and by use of conforming finite element. Numer. Math. 84 (2000) 577–609. | DOI | MR | Zbl
,Axisymmetric Stokes equations in polygonal domains: Regularity and finite element approximations. Comput. Math. Appl. 64 (2012) 3500–3521. | DOI | MR | Zbl
and ,On stability, accuracy, and fast solvers for finite element approximations of the axisymmetric Stokes problem by Hood-Taylor elements. SIAM J. Numer. Anal. 49 (2011) 668–691. | DOI | MR | Zbl
and ,Convergence analysis of the energy and helicity preserving scheme for axisymmetric flows. SIAM J. Numer. Anal. 44 (2006) 2456–2480. | DOI | MR | Zbl
and ,A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40 (2002) 1605–1631. | DOI | MR | Zbl
, and ,Resolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en , et séries de Fourier en . RAIRO Anal. Numér. 16 (1982) 405–461. | DOI | Numdam | MR | Zbl
and ,Blood flow through an axisymmetric stenosis. Proc. Int. Mech. Engrs. 215 (2001) H01–H10.
,On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17 (2007) 215–252. | DOI | MR | Zbl
,Onset of convection in gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548 (2006) 87–111. | DOI | MR
, and ,Mixed finite element methods with discontinuous pressures for the axisymmetric Stokes problem. ZAMM Z. Angew. Math. Mech. 83 (2003) 249–264. | DOI | MR | Zbl
,On the advantages of the vorticity-velocity formulations of the equations of fluid dynamics. J. Comput. Phys. 73 (1987) 476–480. | DOI | Zbl
,A new model for blood flow through an artery with axisymmetric stenosis. Int. J. Biomed. Comput. 38 (1995) 257–267. | DOI
and ,A mixed formulation for the Brinkman problem. SIAM J. Numer. Anal. 52 (2014) 258–281. | DOI | MR | Zbl
and ,Cité par Sources :