In this work, we introduce a discrete specific inf-sup condition to estimate the norm, , of the pressure in a number of fluid flows. It applies to projection-based stabilized finite element discretizations of incompressible flows, typically when the velocity field has a low regularity. We derive two versions of this inf-sup condition: The first one holds on shape-regular meshes and the second one on quasi-uniform meshes. As an application, we derive reduced inf-sup conditions for the linearized Primitive equations of the Ocean that apply to the surface pressure in weighted norm. This allows to prove the stability and convergence of quite general stabilized discretizations of these equations: SUPG, Least Squares, Adjoint-stabilized and OSS discretizations.
Mots clés : Inf-sup condition, Finite element method, Stabilized method, Incompressible flows, Primitive equations of the Ocean
@article{M2AN_2015__49_4_1219_0, author = {Rebollo, Tom\'as Chac\'on and Girault, Vivette and M\'armol, Macarena G\'omez and Mu\~noz, Isabel S\'anchez}, title = {A reduced discrete inf-sup condition in $L^{p}$ for incompressible flows and application}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1219--1238}, publisher = {EDP-Sciences}, volume = {49}, number = {4}, year = {2015}, doi = {10.1051/m2an/2015008}, mrnumber = {3371909}, zbl = {1321.35154}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2015008/} }
TY - JOUR AU - Rebollo, Tomás Chacón AU - Girault, Vivette AU - Mármol, Macarena Gómez AU - Muñoz, Isabel Sánchez TI - A reduced discrete inf-sup condition in $L^{p}$ for incompressible flows and application JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1219 EP - 1238 VL - 49 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2015008/ DO - 10.1051/m2an/2015008 LA - en ID - M2AN_2015__49_4_1219_0 ER -
%0 Journal Article %A Rebollo, Tomás Chacón %A Girault, Vivette %A Mármol, Macarena Gómez %A Muñoz, Isabel Sánchez %T A reduced discrete inf-sup condition in $L^{p}$ for incompressible flows and application %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1219-1238 %V 49 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2015008/ %R 10.1051/m2an/2015008 %G en %F M2AN_2015__49_4_1219_0
Rebollo, Tomás Chacón; Girault, Vivette; Mármol, Macarena Gómez; Muñoz, Isabel Sánchez. A reduced discrete inf-sup condition in $L^{p}$ for incompressible flows and application. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 1219-1238. doi : 10.1051/m2an/2015008. http://www.numdam.org/articles/10.1051/m2an/2015008/
Decomposition of vector spaces and application to the Stokes problem in arbitrary dimensions. Czeschoslovak Math. J. 44 (1994) 109–140. | DOI | MR | Zbl
and ,C. Bernardi, Y. Maday and F. Rapetti, Discretisations variationnelles de problèmes aux limites elliptiques. Springer-Verlag, Berlin (2004). | MR | Zbl
Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection. Comput. Methods Appl. Mech. Engrg. 182 (2000) 277–300. | DOI | MR | Zbl
and ,Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2000) 2544–2566. | DOI | MR | Zbl
and ,Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853–866. | DOI | MR | Zbl
, , and ,S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition. Springer-Verlag, Berlin (2008). | MR | Zbl
Continuous interior penalty finite element method for Oseen equations. SIAM J. Numer. Anal. 44 (2006) 1248–1274. | DOI | MR | Zbl
, and ,Continuous interior penalty finite element method for the time-dependent Navier−Stokes equations: space discretization and convergence. Numer. Math. 107 (2007) 39–77. | DOI | MR | Zbl
and ,Interior penalty variational multiscale method for the incompressible Navier-Stokes equations: Monitoring artificial dissipation. Comput. Methods Appl. Mech. Engrg. 196 (2007) 4045–4058. | DOI | MR | Zbl
,Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Engrg. 190 (2000) 1579–1599. | DOI | MR | Zbl
,An analysis technique for stabilized finite element solution of incompressible flows. ESAIM: M2AN 35 (2001) 57–89. | DOI | Numdam | MR | Zbl
,An intrinsic analysis of existence of solutions for the hydrostatic approximation of Navier-Stokes equations. C. R. Acad. Sci. Paris, Série I 330 (2000) 841–846. | DOI | MR | Zbl
and ,Analysis of the hydrostatic approximation in oceanography with compression term. ESAIM: M2AN 34 (2000) 525–537. | DOI | Numdam | MR | Zbl
, and ,Numerical solution of the Primitive equations of the ocean by the Orthogonal Sub-Scales VMS method. Appl. Numer. Math. 62 (2012) 342–356. | DOI | MR | Zbl
, and ,A high order term-by-term stabilization solver for incompressible flow problems. IMA J. Numer. Anal. 33-3 (2013) 974–1007. | DOI | MR | Zbl
, , , and ,Ph. Ciarlet, The Finite Element Method for Elliptic Problems. Siamm (2002). | MR | Zbl
Local projection stabilization with equal order interpolation applied to the Stokes problem. Math. Comput. 77 (2008) 2039–2060. | DOI | MR | Zbl
, and ,Two-grid finite-element schemes for the transient Navier-Stokes equations. ESAIM: M2AN 35 (2001) 945–980. | DOI | Numdam | MR | Zbl
and ,A generalization of the local projection stabilization for convection-diffusion-reaction equations. SIAM J. Numer. Anal. 48 (2010) 659–680. | DOI | MR | Zbl
,New formulation of the primitive equations of the atmosphere and applications. Nonlinearity 5 (1992) 237–288. | DOI | MR | Zbl
, and ,A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESAIM: M2AN 41 (2007) 713–742. | DOI | Numdam | MR | Zbl
, and ,On a BPX preconditioner for elements. Computing 51 (1993) 125–133. | DOI | MR | Zbl
,H.G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations. 2nd edition. Springer Series Comput. Math. 24 (2008). | Zbl
Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numer. 18 (1984) 175–182. | DOI | Numdam | MR | Zbl
,L.B. Wahlbin, Local behavior in finite element methods. Elsevier Science, North Holland (1991). | MR | Zbl
Cité par Sources :