This paper presents an extension to stabilized methods of the standard technique for the numerical analysis of mixed methods. We prove that the stability of stabilized methods follows from an underlying discrete inf-sup condition, plus a uniform separation property between bubble and velocity finite element spaces. We apply the technique introduced to prove the stability of stabilized spectral element methods so as stabilized solution of the primitive equations of the ocean.
Mots clés : Oseen equations, finite elements, mixed methods, stabilized methods, discrete inf-sup condition, spectral methods, primitive equations
@article{M2AN_2001__35_1_57_0, author = {Rebollo, Tom\'as Chac\'on}, title = {An analysis technique for stabilized finite element solution of incompressible flows}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {57--89}, publisher = {EDP-Sciences}, volume = {35}, number = {1}, year = {2001}, mrnumber = {1811981}, zbl = {0990.76039}, language = {en}, url = {http://www.numdam.org/item/M2AN_2001__35_1_57_0/} }
TY - JOUR AU - Rebollo, Tomás Chacón TI - An analysis technique for stabilized finite element solution of incompressible flows JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 57 EP - 89 VL - 35 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_2001__35_1_57_0/ LA - en ID - M2AN_2001__35_1_57_0 ER -
%0 Journal Article %A Rebollo, Tomás Chacón %T An analysis technique for stabilized finite element solution of incompressible flows %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 57-89 %V 35 %N 1 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_2001__35_1_57_0/ %G en %F M2AN_2001__35_1_57_0
Rebollo, Tomás Chacón. An analysis technique for stabilized finite element solution of incompressible flows. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 1, pp. 57-89. http://www.numdam.org/item/M2AN_2001__35_1_57_0/
[1] Decomposition of Vector spaces and application to the Stokes problem in arbitrary dimensions. Czeschoslovak Math. J. 44 (1994) 109-140. | Zbl
and ,[2] Some estimates for the anisotropic Navier- Stokes equations and for the hydrostatic approximation. RAIRO-Modél. Math. Anal. Numér. 26 (1992) 855-865. | Numdam | Zbl
and ,[3] The Finite Element Method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. | Zbl
,[4] Virtual Bubbles and Galerkin-least-squares type methods (Ga.L.S.). Comput. Methods Appl. Mech. Engrg. 105 (1993) 125-141. | Zbl
, and ,[5] Approximations spectrales de problèmes aux limites elliptiques. Springer-Verlag, Berlin (1992). | MR | Zbl
and ,[6] Analyse Fonctionnelle. Masson, Paris (1983). | MR | Zbl
,[7] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange Multipliers. RAIRO-Anal. Numér. R2 (1974) 129-151. | Numdam | Zbl
,[8] Stabilized mixed methods for the Stokes problem. Numer. Math. 53 (1988) 225-236. | Zbl
and ,[9] On the stabilization of Finite Element approximations of the Stokes problem, in Efficient Solutions for Elliptic Systems. Notes on Numerical Fluid Mechanics 10, W. Hackbusch Ed., Springer-Verlag, Berlin (1984) 11-19. | Zbl
and ,[10] A term by term Stabilization Algorithm for Finite Element solution of incompressible flow problems. Numer. Math. 79 (1998) 283-319. | Zbl
,[11] A unified analysis of Mixed and Stabilized Finite Element Solutions of Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 182 (2000) 301-331. | Zbl
and ,[12] An intrinsic analysis of existence of solutions for the hydrostatic approximation of Navier-Stokes equations. C. R. Acad. Sci. Paris, Série I 330 (2000) 841-846. | Zbl
and ,[13] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[14] Stabilized Finite Elements: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99 (1992) 209-233. | Zbl
and ,[15] Error analysis fo some Galerkin-Least-Squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680-1697. | Zbl
and ,[16] Stabilized Finite Element Methods, in Incompressible Computational Fluid Dynamics, M.D. Gunzburger and R.A. Nicolaides Eds., Cambridge Univ. Press, New York (1993).
, and ,[17] Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin (1988). | MR | Zbl
and ,[18] Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Masson, Paris (2000). | Zbl
and ,[19] Stabilized Spectral Element approximation for the Navier-Stokes equations. Numer. Methods Partial Differential Eq. 14 (1988) 115-141. | Zbl
and ,[20] A new Finite Element formulation for CFD: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Engrg. 65 (1987) 85-96. | Zbl
and ,[21] A new Finite Element formulation for CFD: V. Circumventing the Brezzi-Babuška condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl Mech. Engrg. 59 (1986) 85-99. | Zbl
, and ,[22] Stabilization methods of Bubble type for the -Element applied to the incompressible Navier-Stokes equations. ESAIM: M2AN 34 (2000) 85-107. | Numdam | Zbl
and ,[23] Analyse Mathématique et Océanographie. Masson, Paris (1997).
,[24] New formulation of the primitive equations of the atmosphere and applications. Nonlinearity 5 (1992) 237-288. | Zbl
, and ,[25] Simple -approximations for the computation of incompressible flows. Comput. Methods Appl Mech. Engrg. 68 (1989) 205-228. | Zbl
,[26] Bubble stabilization of Finite Element Methods fo the linearized incompressible Navier-Stokes equations. Comput. Methods Appl Mech. Engrg. 132 (1996) 335-343. | Zbl
,[27] Analysis of a Streamline Diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 107-127. | Zbl
and ,[28] Analysis of some Finite Element solutions for the Stokes Problem. RAIRO-Anal. Numér. 18 (1984) 175-182.
,