In this paper we propose and analyze a localized orthogonal decomposition (LOD) method for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions. This Galerkin-type method is based on a generalized finite element basis that spans a low dimensional multiscale space. The basis is assembled by performing localized linear fine-scale computations on small patches that have a diameter of order H | log (H) | where H is the coarse mesh size. Without any assumptions on the type of the oscillations in the coefficients, we give a rigorous proof for a linear convergence of the H1-error with respect to the coarse mesh size even for rough coefficients. To solve the corresponding system of algebraic equations, we propose an algorithm that is based on a damped Newton scheme in the multiscale space.
Mots clés : finite element method, a priori error estimate, convergence, multiscale method, non-linear, computational homogenization, upscaling
@article{M2AN_2014__48_5_1331_0, author = {Henning, Patrick and M\r{a}lqvist, Axel and Peterseim, Daniel}, title = {A localized orthogonal decomposition method for semi-linear elliptic problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1331--1349}, publisher = {EDP-Sciences}, volume = {48}, number = {5}, year = {2014}, doi = {10.1051/m2an/2013141}, mrnumber = {3264356}, zbl = {1300.35011}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2013141/} }
TY - JOUR AU - Henning, Patrick AU - Målqvist, Axel AU - Peterseim, Daniel TI - A localized orthogonal decomposition method for semi-linear elliptic problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1331 EP - 1349 VL - 48 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2013141/ DO - 10.1051/m2an/2013141 LA - en ID - M2AN_2014__48_5_1331_0 ER -
%0 Journal Article %A Henning, Patrick %A Målqvist, Axel %A Peterseim, Daniel %T A localized orthogonal decomposition method for semi-linear elliptic problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1331-1349 %V 48 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2013141/ %R 10.1051/m2an/2013141 %G en %F M2AN_2014__48_5_1331_0
Henning, Patrick; Målqvist, Axel; Peterseim, Daniel. A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1331-1349. doi : 10.1051/m2an/2013141. http://www.numdam.org/articles/10.1051/m2an/2013141/
[1] Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311-341. | MR | Zbl
and ,[2] Minimization of functions having Lipschitz continuous first partial derivatives. Pacific J. Math. 16 (1966) 1-3. | MR | Zbl
,[3] Domain Decomposition Methods for Elliptic Problems with Jumping Nonlinearities and Application to the Richards Equation. Ph.D. thesis. Freie Universität Berlin (2007).
,[4] Non-overlapping domain decomposition for the Richards equation via superposition operators. Vol. 70 of Lect. Notes Comput. Sci. Eng. Springer, Berlin (2009) 169-176. | MR | Zbl
,[5] On nonlinear Dirichlet-Neumann algorithms for jumping nonlinearities. Domain decomposition methods in science and engineering XVI. Vol. 55 of Lect. Notes Comput. Sci. Eng. Springer, Berlin (2007) 489-496. | MR
, and ,[6] Fast and robust numerical solution of the Richards equation in homogeneous soil. SIAM J. Numer. Anal. 49 (2011) 2576-2597. | MR | Zbl
, and ,[7] An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion. Combust. Theory Model. 4 (2000) 189-210. | MR | Zbl
and ,[8] Hydraulic properties of porous media. Hydrol. Pap. 4, Colo. State Univ., Fort Collins (1964).
and ,[9] Relative permeability calculations from pore-size distribution data. Petr. Trans. Am. Inst. Mining Metall. Eng. 198 (1953) 71-77.
,[10] Quasi-interpolation and a posteriori error analysis in finite element methods. ESAIM: M2AN 33 (1999) 1187-1202. | Numdam | MR | Zbl
,[11] Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36 (1999) 1571-1587. | MR | Zbl
and ,[12] Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM Classics Appl. Math. (1996). | MR | Zbl
and ,[13] W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87-132. | MR | Zbl
[14] An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. SIAM Multiscale Model. Simul. 5 (2006) 996-1043. | MR | Zbl
,[15] Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Netw. Heterog. Media 7 (2012) 503-524. | MR | Zbl
,[16] The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Netw. Heterog. Media 5 (2010) 711-744. | MR | Zbl
and ,[17] A Note on Homogenization of Advection-Diffusion Problems with Large Expected Drift. Z. Anal. Anwend. 30 (2011) 319-339. | MR | Zbl
and ,[18] Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Preprint 01/11 - N, to appear in DCDS-S, special issue on Numerical Methods based on Homogenization and Two-Scale Convergence (2011). | MR
and ,[19] Oversampling for the Multiscale Finite Element Method. SIAM Multiscale Model. Simul. 12 (2013) 1149-1175. | MR | Zbl
and ,[20] A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169-189. | MR | Zbl
and ,[21] The variational multiscale method - a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg. 166 (1998) 3-24. | MR | Zbl
, , and ,[22] Variational multiscale analysis: the fine-scale Green?s function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal. 45 (2007) 539-557. | MR | Zbl
and ,[23] Some steady state solutions of unsaturated moisture ßow equations with application to evaporation from a water table. Soil Sci. 85 (1958) 228-232.
,[24] A closedform equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44 (1980) 892-898.
,[25] Characterizing Mesh Independent Quadratic Convergence of Newton's Method for a Class of Elliptic Problems. J. Math. Anal. 44 (2012) 1279-1303. | MR | Zbl
,[26] Iterative methods for linear and nonlinear equations. In vol. 16. SIAM Frontiers in Applied Mathematics (1996). | MR | Zbl
,[27] Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Engrg. 196 (2007) 2313-2324. | MR | Zbl
and ,[28] An adaptive variational multiscale method for convection-diffusion problems. Commun. Numer. Methods Engrg. 25 (2009) 65-79. | MR | Zbl
and ,[29] A mixed adaptive variational multiscale method with applications in oil reservoir simulation. Math. Models Methods Appl. Sci. 19 (2009) 1017-1042. | MR | Zbl
and ,[30] Multiscale methods for elliptic problems. Multiscale Model. Simul. 9 (2011) 1064-1086. | MR | Zbl
,[31] A. M alqvist and D. Peterseim, Localization of Elliptic Multiscale Problems. To appear in Math. Comput. (2011). Preprint arXiv:1110.0692v4. | Zbl
[32] A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resour. Res. 12 (1976) 513-522.
,[33] Adaptive variational multiscale methods for multiphase flow in porous media. SIAM Multiscale Model. Simul. 7 (2008) 1455-1473. | MR | Zbl
,[34] Robustness of Finite Element Simulations in Densely Packed Random Particle Composites. Netw. Heterog. Media 7 (2012) 113-126. | MR | Zbl
,[35] Finite Elements for Elliptic Problems with Highly Varying, Non-Periodic Diffusion Matrix. SIAM Multiscale Model. Simul. 10 (2012) 665-695. | MR | Zbl
and ,[36] Nichtlineare Funktionalanalysis. Oxford Mathematical Monographs. Springer-Verlag, Berlin, Heidelberg, New York (2004).
,Cité par Sources :