In this paper, we construct and analyze finite element methods for the three dimensional Monge-Ampère equation. We derive methods using the Lagrange finite element space such that the resulting discrete linearizations are symmetric and stable. With this in hand, we then prove the well-posedness of the method, as well as derive quasi-optimal error estimates. We also present some numerical experiments that back up the theoretical findings.
Mots-clés : Monge-Ampère equation, three dimensions, finite element method, convergence analysis
@article{M2AN_2012__46_5_979_0, author = {Brenner, Susanne Cecelia and Neilan, Michael}, title = {Finite element approximations of the three dimensional {Monge-Amp\`ere} equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {979--1001}, publisher = {EDP-Sciences}, volume = {46}, number = {5}, year = {2012}, doi = {10.1051/m2an/2011067}, mrnumber = {2916369}, zbl = {1272.65088}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2011067/} }
TY - JOUR AU - Brenner, Susanne Cecelia AU - Neilan, Michael TI - Finite element approximations of the three dimensional Monge-Ampère equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 979 EP - 1001 VL - 46 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2011067/ DO - 10.1051/m2an/2011067 LA - en ID - M2AN_2012__46_5_979_0 ER -
%0 Journal Article %A Brenner, Susanne Cecelia %A Neilan, Michael %T Finite element approximations of the three dimensional Monge-Ampère equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 979-1001 %V 46 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2011067/ %R 10.1051/m2an/2011067 %G en %F M2AN_2012__46_5_979_0
Brenner, Susanne Cecelia; Neilan, Michael. Finite element approximations of the three dimensional Monge-Ampère equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 5, pp. 979-1001. doi : 10.1051/m2an/2011067. http://www.numdam.org/articles/10.1051/m2an/2011067/
[1] Convergence of approximation schemes for fully nonlinear second order equtions. Asymptotic Anal. 4 (1991) 271-283. | MR | Zbl
and ,[2] Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212-1240. | MR | Zbl
,[3] On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46 (2008) 1212-1249. | MR | Zbl
,[4] The Mathematical Theory of Finite Element Methods, 3th edition. Springer (2008). | MR | Zbl
and ,[5] S.C. Brenner, T. Gudi, M. Neilan and L.-Y. Sung, 𝒞0 penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comput. 80 (2011) 1979-1995. | MR | Zbl
[6] Properties of the solutions of the linearized Monge-Ampère equation. Amer. J. Math. 119 (1997) 423-465. | MR | Zbl
and ,[7] Monge-Ampère Equation : Applications to Geometry and Optimization. Amer. Math. Soc. Providence, RI (1999). | MR | Zbl
and ,[8] The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation. Comm. Pure Appl. Math. 37 (1984) 369-402. | MR | Zbl
, and ,[9] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[10] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | MR | Zbl
, and ,[11] Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Methods Appl. Mech. Engrg. 195 (2006) 1344-1386. | MR | Zbl
and ,[12] An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization. J. Comput. Phys. 227 (2008) 9841-9864. | MR | Zbl
, , , and ,[13] Partial Differential Equations, Graduate Studies in Mathematics. Providence, RI. Amer. Math. Soc. 19 (1998). | Zbl
,[14] Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations. J. Sci. Comput. 38 (2009) 74-98. | MR | Zbl
and ,[15] Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47 (2009) 1226-1250. | MR | Zbl
and ,[16] Convergent finite difference solvers for viscosity solutions of the ellptic Monge-Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49 (2011) 1692-1714. | MR | Zbl
and ,[17] Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation. J. Comput. Phys. 230 (2011) 818-834. | MR | Zbl
and ,[18] Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (2001). | MR | Zbl
and ,[19] Elliptic Problems on Nonsmooth Domains. Pitman Publishing Inc. (1985). | MR | Zbl
,[20] The Monge-Ampère Equation, Progress in Nonlinear Differential Equations and Their Applications 44. Birkhauser, Boston, MA (2001). | Zbl
,[21] A Treatise on the Theory of Determinants. Dover Publications Inc., New York (1960). | JFM | MR
,[22] A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation. Numer. Math. 115 (2010) 371-394. | MR | Zbl
,[23] A unified analysis of some finite element methods for the Monge-Ampère equation. Submitted.
,[24] Über ein Variationspirinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unteworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | MR | Zbl
,[25] Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 221-238. | MR | Zbl
,[26] A quadratically constrained minimization problem arising from PDE of Monge-Ampère type. Numer. Algorithm 53 (2010) 53-66. | MR | Zbl
and ,[27] The Monge-Ampère equation and its geometric applications, Handbook of Geometric Analysis I. International Press (2008) 467-524. | MR | Zbl
and ,[28] Topics in Optimal Transportation, Graduate Studies in Mathematics. Providence, RI. Amer. Math. Soc. 58 (2003). | MR | Zbl
,[29] Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theory 7 (1973) 334-351. | MR | Zbl
,[30] The Monge-Ampère equation : various forms and numerical solutions. J. Comput. Phys. 229 (2010) 5043-5061. | MR | Zbl
, and ,Cité par Sources :