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FINITE ELEMENT APPROXIMATIONS OF THE THREE DIMENSIONAL
MONGE-AMPÈRE EQUATION
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Abstract. In this paper, we construct and analyze finite element methods for the three dimensional
Monge-Ampère equation. We derive methods using the Lagrange finite element space such that the
resulting discrete linearizations are symmetric and stable. With this in hand, we then prove the well-
posedness of the method, as well as derive quasi-optimal error estimates. We also present some numerical
experiments that back up the theoretical findings.
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1. Introduction

Let u be a smooth solution to the Monge-Ampère equation [7, 20, 27]:

det(D2u) = f in Ω, (1.1a)
u = g on ∂Ω. (1.1b)

Here, Ω ⊂ R
3 is either a strictly convex polygonal domain or a strictly convex domain with smooth boundary,

f is a strictly positive function, and det(D2u) denotes the determinant of the Hessian matrix D2u. We assume
that u ∈ Hs(Ω) for some s > 7/2 and is strictly convex. In the case when Ω is smooth, the regularity and strict
convexity of u follows from the smoothness of f and g by the results in Caffarelli-Nirenberg-Spruck [8] (also
see [28], Chap. 4).

The present article is motivated by the results in [5]. Here, the authors constructed convergent finite element
methods for the two dimensional Monge-Ampère equation using the popular and simple Lagrange finite element
spaces. In order to build convergent methods, the authors constructed consistent numerical schemes such that
the resulting discrete linearizations are stable. As emphasized in [5], this simple idea leads to not-so-obvious
discretizations.
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In this paper, we expand on these results and study the three dimensional case. Similar to the analysis of
the two dimensional counterpart, we use Banach’s fixed point theorem as our main tool to prove existence of
a solution to the discrete problem as well as derive quasi-optimal order error estimates. Although the general
strategy is similar, the fine details of the analysis in the three dimensional case prove to be much more difficult.
The underlying reason for the added difficulty is that the mapping u → det(D2u) is cubic (rather than quadratic
in 2D). As a result, the analysis of the 2D case does not carry over, and new techniques must be introduced (cf.
Rem. 3.1).

There has been a recent flux of papers on numerical methods for the Monge-Ampère equation. However, the
three dimensional case is noticeably less prevalent in the literature. We give a brief review in this direction.
In [16, 17], Froese and Oberman generalized the two dimensional finite difference scheme given in [25] by con-
structing wide-stencil finite difference methods for the Monge-Ampère equation in dimensions greater than two.
Using the framework developed by Barles and Souganidis [1], the authors proved convergence of their method by
showing their scheme is monotone, consistent, and stable. In [26] Sorenson and Glowinski considered numerical
methods for a σ2-operator problem, which can be written as a three-dimensional Monge-Ampère-type equation.
Extending the previous work in [11], the authors used a least-squares methodology to compute the solution
of the nonlinear problem. Böhmer [3] introduced a projection method using C1 finite element functions and
analyzes the method using consistency and stability arguments. However, it is very difficult to construct C1

finite element spaces in three dimensions and would require the use of piecewise polynomials of degree nine or
higher [29]. No numerical experiments were given in [3]. Feng and the second author considered fourth order
singular perturbations of (1.1) by adding a small multiple of the biharmonic operator to the PDE [14]. Two
different numerical methods for the three dimensional regularized problem were proposed in [15,22]. Finally, we
mention the method of Zheligovsky et al. [30] who develop numerical methods for the Monge-Ampère equation
with periodic boundary conditions based on its Fourier integral form.

In contrast to the C1 finite element method, the method proposed in this paper is relatively simple to imple-
ment and is computationally efficient. Moreover, unlike the scheme in [26], the method is provably convergent
for smooth solutions. Furthermore, the method can handle curved boundaries and can naturally be extended
to handle more general Monge-Ampère equations such as the equation of prescribed Gauss curvature [18].

The results in this paper are useful for many applications in differential geometry. For other applications (such
as optimal transport [28]) it is important to capture weak solutions (i.e. viscosity or Aleksandrov solutions).
Although the numerical experiments below indicate that the regularity condition u ∈ Hs(Ω), s > 7/2 can be
relaxed (cf. Sect. 5), it is not clear how to extend the analysis to the case of nonclassical solutions. This is
because the analysis is based on the linearization of the numerical scheme which relies on the smoothness of the
Hessian matrix D2u. One option to compute weak solutions is to use the proposed method in conjunction with
the vanishing moment method (cf. [14, 15, 22] and Sect. 5). Preliminary numerical experiments of this concept
are promising, but the convergence analysis has not been explored yet.

The rest of the paper is organized as follows. In Section 2 we set the notation and state some standard
identities and inequalities. In Section 3 we derive the finite element method for the Monge-Ampère equation
so that the resulting discrete linearization is stable and symmetric. With this in hand, in Section 4 we use a
fixed-point argument to simultaneously prove well-posedness of the method as well as derive quasi-optimal error
estimates. We end this section with L2 error estimates obtained by a duality argument. In Section 5 we present
three numerical experiments which back up the theoretical findings. We end the paper with some concluding
remarks.

2. Notation and some preliminary results

Let Th be a quasi-uniform, simplicial, and conforming triangulation [2, 4, 9] of the domain Ω such that each
simplex has at most one curved face. We denote by F i

h the set of interior faces, Fb
h the set of boundary faces,

and Fh = F i
h ∪ Fb

h the set of all of the faces in Th. We set hT = diam(T ) for all T ∈ Th, hF = diam(F) for all
F ∈ Fh, and note that by the assumption of quasi-uniformity of the mesh, hT ≈ hF ≈ h := maxT∈Th

hT .
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For a face F ∈ F i
h, there exist two simplexes T +, T− ∈ Th such that F = ∂T + ∩ ∂T−. We shall denote the

average of a piecewise smooth vector function w ∈ R
3 across F as{{

w
}}∣∣

F =
1
2
(
w+

∣∣
F + w−∣∣

F
)
,

where we use the notation w± = w
∣∣
T± . In the case that F is a boundary face with F = ∂Ω ∩ ∂T +, we set{{

w
}}∣∣

F = w+|F .

Similarly for a matrix w ∈ R
3×3, we denote the average across F as{{
w
}}∣∣

F =
1
2
(
w+

∣∣
F + w−∣∣

F
)

if F = ∂T + ∩ ∂T− ∈ F i
h,{{

w
}}∣∣

F = w+
∣∣
F if F = ∂Ω ∩ ∂T + ∈ Fb

h.

Next, we define the jump of a vector function w (which is a scalar) as[[
w
]]∣∣

F = w+ · n+

∣∣
F + w− · n−

∣∣
F if F = ∂T + ∩ ∂T− ∈ F i

h,[[
w
]]∣∣

F = w · n+

∣∣
F if F = ∂Ω ∩ ∂T + ∈ Fb

h,

where n± denotes the unit outward normal of T±.
We use Wm,q(Ω) to denote the set of all Lq(Ω) functions whose distributional derivatives up to order m are

in Lq(Ω) and set Hm(Ω) = Wm,2(Ω). We also define the piecewise Sobolev spaces as

Wm,q(Th) =
∏

T∈Th

Wm,q(T ), Hm(Th) = Wm,2(Th).

For a normed linear space X , we denote by X ′ its dual and
〈
·, ·
〉

the pairing between X ′ and X .
Denote by ∇hv the piecewise gradient of v, and by D2

hv the piecewise Hessian matrix of v. We also set
cof(D2

hv) to be the cofactor matrix of D2
hv; that is

cof(D2
hv)ij = (−1)i+j det(D2

hv
∣∣
ij

) i, j = 1, 2, 3,

where D2
hv
∣∣
ij

denotes the 2 × 2 matrix resulting from deleting the ith row and jth column of D2
hv.

We define the discrete (semi)norms

‖v‖W 2,3(Th) =

( ∑
T∈Th

(
‖D2

hv‖3
L3(T ) + hT ‖D2

hv‖3
L3(∂T )

)
(2.1)

+
∑

F∈Fh

1
h2
F

∥∥[[∇hv
]]∥∥3

L3(F)
+

∑
F∈Fb

h

1
h5
F
‖v‖3

L3(F)

) 1
3

,

‖v‖H2(Th) =

(
‖D2

hv‖2
L2(Ω) +

∑
F∈Fh

(
hF
∥∥{{D2

hv
}}∥∥2

L2(F)
+

1
hF

∥∥[[∇hv
]]∥∥2

L2(F)

)
+

∑
F∈Fb

h

1
h3
F
‖v‖2

L2(F)

) 1
2

, (2.2)

‖v‖H1(Th) =

(
‖∇hv‖2

L2(Ω) +
∑

F∈Fb
h

(
hF‖∇hv‖2

L2(F) +
1

hF
‖v‖2

L2(F)

)) 1
2

, (2.3)

‖v‖H−1(Th) = sup
w∈Vh

〈
v, w

〉
‖w‖H1(Th)

· (2.4)
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Remark 2.1. The norms (2.1)–(2.4) are well-defined for functions in W 3,3(Th).

Let k be an integer greater than or equal to three and define the finite element space Vh ⊂ H1(Ω) as follows:
• if T ∈ Th does not have a curved face, then v

∣∣
T

is a polynomial of (total) degree ≤ k in the rectilinear
coordinates for T ;

• if T ∈ Th has one curved face, then v
∣∣
T

is a polynomial of degree ≤ k in the curvilinear coordinates of T
that are associated with the reference simplex (Ex. 2, p. 1216 of [2]).

Remark 2.2. The reason for the requirement k ≥ 3 as well as the regularity condition u ∈ Hs(Ω) for s > 7/2
will be made clear in the proof of Theorem 4.12.

We end this section with some preliminary results and identities that are needed in both the derivation of
the scheme and the convergence analysis.

Lemma 2.3 (divergence free row property of cofactor matrices, [13]). For any piecewise smooth function v,

∇h ·
(
cof(D2

hv)i

)
=

3∑
j=1

∂

∂xj

(
cof(D2

hv)ij

)
= 0 for i = 1, 2, 3, (2.5)

where cof(D2
hv)i and cof(D2

hv)ij denote respectively the ith row and the (i, j)-entry of the cofactor matrix
cof(D2

hv), and ∇h· denotes the piecewise divergence operator.

Lemma 2.4 (determinant and cofactor expansions). For any piecewise smooth v, w there holds

det(D2
h(v + w)) = det(D2

hv) + ∇h ·
(
cof(D2

hv)∇hw
)

+ ∇h · (cof(D2
hw)∇hv) + det(D2

hw), (2.6)

and

cof(D2
h(v + w)) = cof(D2

hv) + cof(D2
hw) + A(v, w), (2.7)

where A(v, w) ∈ R
3×3 is defined such that

A(v, w)ij = (−1)i+jcof(D2
hv
∣∣
ij

) : D2
hw
∣∣
ij

i, j = 1, 2, 3, (2.8)

and D2
hv
∣∣
ij

denotes the 2 × 2 matrix resulting from deleting the ith row and jth column of D2
hv. Here, B : C

denotes the Frobenius inner product between two matrices B and C, i.e., B : C =
∑

i,j BijCij.

Proof. For any matrices 3 × 3 matrices B and C, there holds [21]

det(B + C) =
∑
ν∈S3

sign(ν)
3∏

i=1

[
Bi,ν(i) + Ci,ν(i)

]
(2.9)

=
∑
ν∈S3

sign(ν)
3∏

i=1

Bi,ν(i) +
∑
ν∈S3

sign(ν)
3∑

i=1

Ci,ν(i)

∏
j �=i

Bj,ν(j)

+
∑
ν∈S3

sign(ν)
3∑

i=1

Bi,ν(i)

∏
j �=i

Cj,ν(j) +
∑
ν∈S3

sign(ν)
3∏

i=1

Ci,ν(i)

= det(B) +
3∑

i,j=1

Ci,j

( ∑
ν∈S3

ν(i)=j

sign(ν)
∏
j �=i

Bj,ν(j)

)

+
3∑

i,j=1

Bi,j

( ∑
ν∈S3

ν(i)=j

sign(ν)
∏
j �=i

Cj,ν(j)

)
+ det(C)

= det(B) + cof(B) : C + cof(C) : B + det(C),
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where S3 consists of all permutations of the set {1, 2, 3}. It then follows from (2.9) and Lemma 2.3 that

det(D2
h(v + w)) = det(D2

hv) + cof(D2
hv) : D2

hw + cof(D2
hw) : D2

hv + det(D2
hw)

= det(D2
hv) + ∇ · (cof(D2

hv)∇hw) + ∇ · (cof(D2
hw)∇hv) + det(D2

hw).

To prove (2.7), we first use the definition of cofactor matrices.

cof(D2
h(v + w))ij = (−1)i+j det

(
D2

h(v + w)
∣∣
ij

)
i, j = 1, 2, 3.

It can readily be checked that (cf. [6])

det
(
D2

h(v + w)
∣∣
ij

)
= det

(
D2

hv
∣∣
ij

)
+ det

(
D2

hw
∣∣
ij

)
+ cof

(
D2

hv
∣∣)

ij
: D2

hw
∣∣
ij

,

and therefore by (2.8),

cof(D2
h(v + w))ij = (−1)i+j

(
det(D2

hv
∣∣
ij

)
+ det

(
D2

hw
∣∣
ij

)
+ cof

(
D2

hv
∣∣
ij

)
: D2

hw
∣∣
ij

)
= cof(D2

hv)ij + cof(D2
hw)ij + A(v, w)ij . �

Remark 2.5. The mapping (v, w) → A(v, w) is bilinear and symmetric.

Remark 2.6. In order to avoid the proliferation of constants, we shall use the notation A � B to represent
the relation A ≤ constant × B, where the constant is independent of the mesh parameter h and the penalty
parameter σ.

Lemma 2.7 (inverse estimates). For any v ∈ Vh, there holds

h1/2‖v‖L∞(Ω) + h‖v‖H2(Th) + h3/2‖∇v‖L∞(Ω) + h3/2‖v‖W 2,3(Th) � ‖v‖H1(Th). (2.10)

Proof. By the inverse inequality [4, 9] followed by a Sobolev embedding, we have

‖v‖L∞(Ω) � h−1/2‖v‖L6(Ω) � h−1/2‖v‖H1(Ω) ≤ h−1/2‖v‖H1(Th).

The other three inequalities in (2.10) follow from standard scaling arguments. �

Lemma 2.8 (approximation properties of Vh [2]). Let m, � be two integers such that 0 ≤ m ≤ � ≤ k + 1. Then
for any χ ∈ H�(Ω), there exists a v ∈ Vh such that

(∑
T∈Th

‖χ − v‖2
Hm(T )

) 1
2

� h�−m‖χ‖H�(Ω).

Furthermore if H�(Ω) ⊂ Wm,3(Ω), then

(∑
T∈Th

h
3/2
T ‖χ − v‖3

W m,3(T )

) 1
3

� h�−m‖χ‖H�(Ω).
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3. Derivation of the finite element method

To derive the finite element method for (1.1), we follow arguments similar to those presented in [5] where the
two dimensional case was considered. To motivate the method, we first note that the linearized Monge-Ampère
problem reads [6]

−∇ ·
(
cof(D2u)∇w

)
= 0 in Ω, (3.1a)

w = 0 on ∂Ω. (3.1b)

The finite element discretization of the linearization (3.1) using Nitsche’s method [24] is defined by

(w, v) →
∫

Ω

(
cof(D2u)∇hw

)
· ∇hv dx −

∑
F∈Fb

h

∫
F

[[
cof(D2u)∇hw

]]
v ds (3.2)

−
∑

F∈Fb
h

∫
F

[[
cof(D2u)∇hv

]]
w ds + σ

∑
F∈Fb

h

1
hF

∫
F

vw ds.

Our goal is to construct a scheme such that the linearization of the discrete Monge-Ampère problem is the
discretization of the linearized Monge-Ampère problem (3.1) by Nitsche’s method; i.e., that the linearized
discrete Monge-Ampère problem is (3.2). With such a scheme in hand, the discrete linearization will be stable
(cf. Rem. 4.1) which is a key ingredient in the convergence analysis.

To this end, for w ∈ W 3,3(Th) and v ∈ Vh, we first state the following identity, which follows from (1.1a) and
Lemmas 2.3–2.4:

∫
Ω

(
f − det(D2

h(u + w))
)
v dx = −

∫
Ω

(
det(D2

hw) + cof(D2
hw) : D2

hu
)
v dx −

∫
Ω

(
∇h ·

(
cof(D2u)∇hw

))
v dx

= −
∫

Ω

(
det(D2

hw) + cof(D2
hw) : D2u

)
v dx

+
∫

Ω

(
cof(D2u)∇hw

)
· ∇hv dx −

∑
F∈Fh

∫
F

[[
cof(D2u)∇hw

]]
v ds.

Therefore, by rearranging the last term in the expression above we have

∫
Ω

(
f − det(D2

h(u + w))
)
v dx +

∑
F∈Fi

h

∫
F

[[
cof(D2u)∇hw

]]
v ds

= −
∫

Ω

(
det(D2

hw) + cof(D2
hw) : D2u

)
v dx

+
∫

Ω

(
cof(D2u)∇hw

)
· ∇hv dx −

∑
F∈Fb

h

∫
F

[[
cof(D2u)∇hw

]]
v ds.
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Adding terms on both sides of the equation and noting
[[
∇u

]]∣∣
F = 0 ∀F ∈ F i

h, we have by (2.7) that
∫

Ω

(
f − det

(
D2

h(u + w)
))

v dx +
∑

F∈Fi
h

∫
F

[[{{
cof(D2

h(u + w))
}}
∇h(u + w)

]]
v ds (3.3)

=
∫

Ω

(
f − det

(
D2

h(u + w)
))

v dx +
∑

F∈Fi
h

∫
F

[[{{
cof(D2u)

}}
∇hw

]]
v ds

+
∑

F∈Fi
h

∫
F

[[{{
cof(D2

hw)
}}
∇hw

]]
v ds +

∑
F∈Fi

h

∫
F

[[{{
A(u, w)

}}
∇hw

]]
v ds

=
∫

Ω

(
cof(D2u)∇hw

)
· ∇hv dx −

∑
F∈Fb

h

∫
F

[[
cof(D2u)∇hw

]]
v ds

−
∫

Ω

(
cof(D2

hw) : D2u
)
v dx +

∑
F∈Fi

h

∫
F

[[{{
A(u, w)

}}
∇hw

]]
v ds

−
∫

Ω

(
det(D2

hw)
)
v dx +

∑
F∈Fi

h

∫
F

[[{{
cof(D2

hw)
}}
∇hw

]]
v ds.

Note that the bilinear form

(w, v) →
∫

Ω

(
cof(D2u)∇hw

)
· ∇hv dx −

∑
F∈Fb

h

∫
F

[[
cof(D2u)∇hw

]]
v ds

that appears on the right-hand side of (3.3) can be symmetrized and stabilized to become the consistent and
stable bilinear form defined by (3.2). Imposing symmetrization and stabilization, (3.3) becomes∫

Ω

(
f − det

(
D2

h(u + w)
))

v dx +
∑

F∈Fi
h

∫
F

[[{{
cof(D2

h(u + w))
}}
∇h(u + w)

]]
v ds (3.4)

−
∑

F∈Fb
h

[[
cof(D2

h(u + w))∇hv
]]
(u + w) ds +

∑
F∈Fb

h

∫
F

[[
cof(D2

h(u + w))∇hv
]]
g ds

+ σ
∑

F∈Fb
h

1
hF

∫
F

(u + w)v ds − σ
∑

F∈Fb
h

1
hF

∫
F

gv ds

=
∫

Ω

(
cof(D2u)∇hw

)
· ∇hv dx −

∑
F∈Fb

h

∫
F

[[
cof(D2u)∇hw

]]
v ds

−
∑

F∈Fb
h

∫
F

[[
cof(D2u)∇hv

]]
w ds + σ

∑
F∈Fb

h

1
hF

∫
F

wv ds

−
∫

Ω

(
cof(D2

hw) : D2u
)
v dx +

∑
F∈Fi

h

∫
F

[[{{
A(u, w)

}}
∇hw

]]
v ds −

∑
F∈Fb

h

∫
F

[[
A(u, w)∇hv

]]
w ds

−
∫

Ω

(
det(D2

hw)
)
v dx +

∑
F∈Fi

h

∫
F

[[{{
cof(D2

hw)
}}
∇hw

]]
v ds

−
∑

F∈Fb
h

∫
F

[[
cof(D2

hw)∇hv
]]
w ds,
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where σ is a positive penalty parameter independent of h. Equation (3.4) can be written compactly as

F (u + w) = Lw + Qw + Rw, (3.5)

where the operators F, R, Q, L : W 3,3(Th) → V ′
h are defined as

〈
Fw, v

〉
=
∫

Ω

(
f − det(D2

hw)
)
v dx +

∑
F∈Fi

h

∫
F

[[{{
cof(D2

hw)
}}
∇hw

]]
v ds (3.6)

−
∑

F∈Fb
h

∫
F

[[
cof(D2

hw)∇hv
]]
(w − g) ds + σ

∑
F∈Fb

h

1
hF

∫
F

(w − g)v ds,

〈
Rw, v

〉
= −

∫
Ω

(
det(D2

hw)
)
v dx +

∑
F∈Fi

h

∫
F

[[{{
cof(D2

hw)
}}
∇hw

]]
v ds (3.7)

−
∑

F∈Fb
h

∫
F

[[
cof(D2

hw)∇hv
]]
w ds,

〈
Qw, v

〉
= −

∫
Ω

(
cof(D2

hw) : D2u
)
v dx +

∑
F∈Fi

h

∫
F

[[{{
A(u, w)

}}
∇hw

]]
v ds (3.8)

−
∑

F∈Fb
h

∫
F

[[
A(u, w)∇hv

]]
w ds,

〈
Lw, v

〉
=
∫

Ω

(
cof(D2u)∇hw

)
· ∇hv dx −

∑
F∈Fb

h

∫
F

[[
cof(D2u)∇hw

]]
v ds (3.9)

−
∑

F∈Fb
h

∫
F

[[
cof(D2u)∇hv

]]
w ds + σ

∑
F∈Fb

h

1
hF

∫
F

vw ds.

Let Fh : Vh → V ′
h be the restriction of F to the finite element space Vh. Then the finite element method for

(1.1) is to find uh ∈ Vh such that

Fhuh = 0, (3.10)

that is, ∫
Ω

(
f − det(D2

huh)
)
v dx +

∑
F∈Fi

h

∫
F

[[{{
cof(D2

huh)
}}
∇uh

]]
v ds

−
∑

F∈Fb
h

∫
F

[[
cof(D2

huh)∇v
]]
(uh − g) ds + σ

∑
F∈Fb

h

1
hF

∫
F

(uh − g)v ds = 0 ∀v ∈ Vh.

Remark 3.1. The finite element method (3.10) is the same as the two dimensional method studied in [5].
However, the decomposition (3.5) is not, as the operator Q does not appear in the two dimensional case. This
difference as well as the fact that R is cubic and not quadratic in its arguments makes the analysis a bit more
involved than the two dimensional counterpart.

4. Convergence analysis

4.1. Strategy and some preliminary estimates

The proofs of both existence as well as error estimates of the finite element method (3.10) proceed by using
a relatively simple linearization fixed-point strategy. To this end, we let Lh : Vh → V ′

h be the restriction of L to
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Vh, that is, 〈
Lhv, w

〉
=
〈
Lv, w

〉
∀v, w ∈ Vh.

We then define uc,h ∈ Vh such that

uc,h = L−1
h Lu, (4.1)

where L−1
h : V ′

h → Vh denotes the inverse operator of Lh.

Lemma 4.1. For σ sufficiently large, the operator Lh is invertible, and we have the following estimates:

‖L−1
h φ‖H1(Th) � ‖φ‖H−1(Th) ∀φ ∈ V ′

h, (4.2)

‖Lw‖H−1(Th) � (1 + σ)‖w‖H1(Th) ∀w ∈ H2(Th) ∩ H1(Ω), (4.3)

and

‖u − uc,h‖H1(Th) + h‖u − uc,h‖H2(Th) � (1 + σ)h�−1‖u‖H�(Ω), (4.4)

where � = min{s, k + 1}.

The proof of Lemma 4.1 can be found, e.g., in [5], Lemma 3.1, and also [24]. For completeness, we provide a
proof of Lemma 4.1 in the appendix.

Remark 4.2. For the rest of the paper, we assume that σ is large enough so that (4.2)–(4.4) hold.

Lemma 4.3. There holds the following estimate:

‖u − uc,h‖W 2,3(Th) � (1 + σ)h�−5/2‖u‖H�(Ω). (4.5)

Proof. By the triangle inequality and the inverse inequality (2.10), we have for any v ∈ Vh

‖u − uc,h‖W 2,3(Th) � ‖u − v‖W 2,3(Th) + h−1/2‖uc,h − v‖H2(Th)

≤ ‖u − v‖W 2,3(Th) + h−1/2‖u − v‖H2(Th) + h−1/2‖u − uc,h‖H2(Th).

The estimate (4.5) then follows from Lemma 2.8 and (4.4). �

Define the mapping M : W 3,3(Th) → Vh as

M = L−1
h

(
L − F

)
, (4.6)

and let Mh : Vh → Vh be the restriction of M to Vh, that is,

Mh = Idh − L−1
h Fh, (4.7)

where Idh denotes the identity operator on Vh. The goal now is to show that Mh has a unique fixed point in a
neighborhood of uc,h, which will be a solution to the finite element method (3.10).

To achieve this goal, we first note that by (4.6), (3.5), and (4.1)

Mw = L−1
h

(
Lw − Fw

)
= L−1

h

(
Lw − L(w − u) − Q(w − u) − R(w − u)

)
= uc,h − L−1

h

(
Q(w − u) + R(w − u)

)
,
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and therefore,

uc,h − Mw = L−1
h

(
R(w − u) + Q(w − u)

)
∀w ∈ W 3,3(Th), (4.8)

and

Mw1 − Mw2 = L−1
h

(
R(w2 − u) − R(w1 − u) + Q(w2 − u) − Q(w1 − u)

)
∀w1, w2 ∈ W 3,3(Th). (4.9)

To estimate the right-hand sides of (4.8) and (4.9), we introduce the Gâteaux derivative of Q and the first
and second Gâteaux derivatives of R:

DQ[w](z) = lim
t→0

Q(w + tz) − Q(w)
t

,

DR[w](z) = lim
t→0

R(w + tz) − R(w)
t

,

D2R[w](z, q) = lim
t→0

DR[w + tq](z) − DR[w](z)
t

·

Remark 4.4. By (3.7)–(3.8) and the expansions (2.6)–(2.7),

〈
DQ[w](z), v

〉
= −

∫
Ω

(
A(w, z) : D2u

)
v dx +

∑
F∈Fi

h

∫
F

([[{{
A(u, z)

}}
∇hw

]]
+
[[{{

A(u, w)
}}
∇hz

]])
v ds

−
∑

F∈Fb
h

∫
F

([[
A(u, w)∇hv

]]
z +

[[
A(u, z)∇hv

]]
w
)
ds, (4.10)

〈
DR[w](z), v

〉
= −

∫
Ω

(
cof(D2

hw) : D2
hz
)
v dx +

∑
F∈Fi

h

∫
F

([[{{
cof(D2

hw)
}}
∇hz

]]
+
[[{{

A(w, z)
}}
∇hw

]])
v ds

−
∑

F∈Fb
h

∫
F

([[
cof(D2

hw)∇hv
]]
z +

[[
A(w, z)∇hv

]]
w
)
ds, (4.11)

〈
D2R[w](z, q), v

〉
= −

∫
Ω

(
A(w, q) : D2

hz
)
v dx

+
∑

F∈Fi
h

∫
F

([[{{
A(w, q)

}}
∇hz

]]
+
[[{{

A(w, z)
}}
∇hq

]]
+
[[{{

A(q, z)
}}
∇hw

]])
v ds

−
∑

F∈Fb
h

∫
F

([[
A(w, q)∇hv

]]
z +

[[
A(w, z)∇hv

]]
q +

[[
A(q, z)∇hv

]]
w
)
ds. (4.12)

We note that the mapping (w, z) → DQ[w](z) is bilinear, and the mapping (w, z, q) → D2R[w](z, q) is
trilinear. Furthermore, we have the following symmetry properties 3:

DQ[w](z) = DQ[z](w),

D2R[w](z, q) = D2R[q](z, w) = D2R[q](w, z).

3To see the second symmetry property of D2R, set Φ(s, t) = R(w + sq + tz) and note that D2R[w](z, q) = ∂2Φ
∂s∂t

(0, 0) =
∂2Φ
∂t∂s

(0, 0) = D2R[w](q, z).
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Since DQ[·](·) is bilinear, we have for any z1, z2 ∈ W 3,3(Th)

Q(z1) − Q(z2) =
∫ 1

0

DQ[tz1 + (1 − t)z2](z1 − z2) dt = DQ

[
1
2
(z1 + z2)

]
(z1 − z2).

In particular,

Q(w1 − u) − Q(w2 − u) = DQ

[
1
2
(w1 + w2) − u

]
(w1 − w2). (4.13)

Moreover, using the trilinearity and symmetry of D2R we have

R(z1) − R(z2) =
∫ 1

0

DR[tz1 + (1 − t)z2](z1 − z2) dt

=
∫ 1

0

[∫ 1

0

d
ds

DR
[
s(tz1 + (1 − t)z2)

]
(z1 − z2) ds

]
dt

=
∫ 1

0

[∫ 1

0

sD2R[tz1 + (1 − t)z2](z1 − z2, tz1 + (1 − t)z2) ds

]
dt

=
1
2

∫ 1

0

D2R[tz1 + (1 − t)z2](z1 − z2, tz1 + (1 − t)z2) dt

=
1
2

∫ 1

0

D2R[z1 − z2](tz1 + (1 − t)z2, tz1 + (1 − t)z2) dt

=
1
6

(
D2R[z1 − z2](z1, z1) + D2R[z1 − z2](z1, z2) + D2R[z1 − z2](z2, z2)

)
.

Therefore, we have

R(w1 − u) − R(w2 − u) =
1
6

(
D2R[w1 − w2](w1 − u, w1 − u) (4.14)

+ D2R[w1 − w2](w1 − u, w2 − u)

+ D2R[w1 − w2](w2 − u, w2 − u)
)
.

In light of the identities (4.8)–(4.9) and (4.13)–(4.14) we must first derive estimates for the operators DQ and
D2R in order to show that Mh is a contraction mapping in a neighborhood of uc,h. We establish these bounds
in the following lemmas.

Lemma 4.5 (estimate of DQ). We have for any w, z ∈ W 3,3(Th),

∥∥DQ[w](z)
∥∥

H−1(Th)
� h−1/2‖w‖H2(Th)‖z‖H2(Th). (4.15)
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Proof. By (4.10) and (2.10), we have for any v ∈ Vh

〈
DQ[w](z), v

〉
≤
(∥∥A(z, w)

∥∥
L1(Ω)

‖D2u‖L∞(Ω) +
∑

F∈Fi
h

(∥∥{{A(u, z)
}}∥∥

L2(F)

∥∥[[∇hw
]]∥∥

L2(F)

+
∥∥{{A(u, w)

}}∥∥
L2(F)

∥∥[[∇hz
]]∥∥

L2(F)

))
‖v‖L∞(Ω)

+
∑

F∈Fb
h

(∥∥A(u, w)
∥∥

L2(F)
‖z‖L2(F) +

∥∥A(u, z)
∥∥

L2(F)
‖w‖L2(F)

)
‖∇v‖L∞(Ω)

� h−1/2

(∥∥A(z, w)
∥∥

L1(Ω)
+

∑
F∈Fi

h

(∥∥{{A(u, z)
}}∥∥

L2(F)

∥∥[[∇hw
]]∥∥

L2(F)

+
∥∥{{A(u, w)

}}∥∥
L2(F)

∥∥[[∇hz
]]∥∥

L2(F)

)
+

∑
F∈Fb

h

1
hF

(∥∥A(u, w)
∥∥

L2(F)
‖z‖L2(F)

+
∥∥A(u, z)

∥∥
L2(F)

‖w‖L2(F)

))
‖v‖H1(Th).

Therefore by (2.8) and the Cauchy-Schwarz inequality

〈
DQ[w](z), v

〉
� h−1/2

(
‖D2

hz‖L2(Ω)‖D2
hw‖L2(Ω)

+
∑

F∈Fi
h

(∥∥{{D2
hz
}}∥∥

L2(F)

∥∥[[∇hw
]]∥∥

L2(F)
+
∥∥{{D2

hw
}}∥∥

L2(F)

∥∥[[∇hz
]]∥∥

L2(F)

)

+
∑

F∈Fb
h

1
hF

(
‖D2

hw‖L2(F)‖z‖L2(F) + ‖D2
hz‖L2(F)‖w‖L2(F)

))
‖v‖H1(Th)

� h−1/2‖z‖H2(Th)‖w‖H2(Th)‖v‖H1(Th).

The estimate (4.15) then follows from the definition (2.4). �

Lemma 4.6. For any w, z, q ∈ W 3,3(Th), we have

∑
F∈Fh

∫
F

∥∥[[{{A(w, z)
}}
∇hq

]]∥∥
L1(F)

� ‖w‖W 2,3(Th)‖z‖W 2,3(Th)‖q‖W 2,3(Th), (4.16)

∑
F∈Fb

h

1
hF

∫
F

∥∥A(w, z)q‖L1(F) � ‖w‖W 2,3(Th)‖z‖W 2,3(Th)‖q‖W 2,3(Th). (4.17)

Proof. To prove (4.16), we first use Hölder’s inequality and (2.8) to obtain

∑
F∈Fh

∫
F

∥∥[[{{A(w, z)
}}
∇hq

]]∥∥
L1(F)

≤
∑

F∈Fh

∥∥{{A(w, z)
}}∥∥

L
3
2 (F)

∥∥[[∇hq
]]∥∥

L3(F)

�
∑

F∈Fi
h

(∥∥D2
hw+

∥∥
L3(F)

‖D2
hz+‖L3(F) + ‖D2

hw−‖L3(F)‖D2
hz−‖L3(F)

)∥∥[[∇hq
]]∥∥

L3(F)

+
∑

F∈Fb
h

∥∥D2
hw
∥∥

L3(F)
‖D2

hz‖L3(F)

∥∥[[∇hq
]]∥∥

L3(F)
.
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Therefore by Hölder’s nequality and (2.1), we have

∑
F∈Fh

∫
F

∥∥[[{{A(w, z)
}}
∇hq

]]∥∥
L1(F)

�
( ∑

T∈Th

hT ‖Dhw‖3
L3(∂T )

) 1
3
( ∑

T∈Th

hT ‖Dhz‖3
L3(∂T )

) 1
3
( ∑

F∈Fh

1
h2
F

∥∥[[∇hq
]]∥∥3

L3(F)

) 1
3

≤ ‖w‖W 2,3(Th)‖z‖W 2,3(Th)‖q‖W 2,3(Th).

We prove (4.17) using similar techniques. First we have

∑
F∈Fb

h

1
hF

∫
F

∥∥A(w, z)q‖L1(F) ≤
∑

F∈Fb
h

1
hF

‖D2
hw‖L3(F)‖D2

hz‖L3(F)‖q‖L3(F),

and therefore ∑
F∈Fb

h

1
hF

∫
F

∥∥A(w, z)q‖L1(F)

�
( ∑

T∈Th

hT ‖Dhw‖3
L3(∂T )

) 1
3
( ∑

T∈Th

hT ‖Dhz‖3
L3(∂T )

) 1
3
( ∑

F∈Fb
h

1
h5
F
‖q‖3

L3(F)

) 1
3

≤ ‖w‖W 2,3(Th)‖z‖W 2,3(Th)‖q‖W 2,3(Th). �

Lemma 4.7 (estimate of D2R). For any w, z, q ∈ W 3,3(Th), we have∥∥D2R[w](z, q)
∥∥

H−1(Th)
� h−1/2‖w‖W 2,3(Th)‖z‖W 2,3(Th)‖q‖W 2,3(Th). (4.18)

Proof. By (4.11), (2.10), and (2.8), we have for any v ∈ Vh

〈
D2R[w](z, q), v

〉
≤
( ∑

T∈Th

‖D2
hw‖L3(T )‖D2

hq‖L3(T )‖D2
hz‖L3(T ) +

∑
F∈Fi

h

(∥∥[[{{A(w, q)
}}
∇hz

]]∥∥
L1(F)

+
∥∥[[{{A(w, z)

}}
∇hq

]]∥∥
L1(F)

+
∥∥[[{{A(q, z)

}}
∇hw

]]∥∥
L1(F)

))
‖v‖L∞(Ω)

+
∑

F∈Fb
h

(∥∥A(w, q)z
∥∥

L1(F)
+
∥∥A(w, z)q

∥∥
L1(F)

+
∥∥A(q, z)w

∥∥
L1(F)

)
‖∇v‖L∞(Ω)

� h−1/2

(
‖D2

hw‖L3(Ω)‖D2
hq‖L3(Ω)‖D2

hz‖L3(Ω) +
∑

F∈Fi
h

(∥∥[[{{A(w, q)
}}
∇hz

]]∥∥
L1(F)

+
∥∥[[{{A(w, z)

}}
∇hq

]]∥∥
L1(F)

+
∥∥[[{{A(q, z)

}}
∇hw

]]∥∥
L1(F)

)

+
∑

F∈Fb
h

1
hF

(∥∥A(w, q)z
∥∥

L1(F)
+
∥∥A(w, z)q

∥∥
L1(F)

+
∥∥A(q, z)w

∥∥
L1(F)

))
‖v‖H1(Th).

Therefore by (2.1) and (4.16)–(4.17)〈
D2R[w](z, q), v

〉
� h−1/2‖w‖W 2,3(Th)‖z‖W 2,3(Th)‖q‖W 2,3(Th)‖v‖H1(Th),

from which (4.18) immediately follows. �
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4.2. Main results

With Lemmas 4.5 and 4.7 established, we proceed with the analysis of the nonlinear problem (3.10). First,
combining (4.13)–(4.14) with the estimates (4.15) and (4.18), we immediately obtain the next two results.

Lemma 4.8 (contraction estimate of Q). For any w1, w2 ∈ W 3,3(Th), we have∥∥Q(w1 − u) − Q(w2 − u)
∥∥

H−1(Th)
� h−1/2

(
‖u − w1‖H2(Th) + ‖u − w2‖H2(Th)

)
‖w1 − w2‖H2(Th). (4.19)

Proof. By (4.13) and (4.15), we have

∥∥Q(w1 − u) − Q(w2 − u)
∥∥

H−1(Th)
=
∥∥DQ

[
1
2
(w1 + w2) − u

]
(w1 − w2)

∥∥
H−1(Th)

� h−1/2
(
‖u − w1‖H2(Th) + ‖u − w2‖H2(Th)

)
‖w1 − w2‖H2(Th). �

Lemma 4.9 (contraction estimate of R). For any w1, w2 ∈ W 3,3(Th), we have∥∥R(w1 − u) − R(w2 − u)
∥∥

H−1(Th)
� h−1/2

(
‖u − w1‖2

W 2,3(Th) + ‖u − w2‖2
W 2,3(Th)

)
‖w1 − w2‖W 2,3(Th). (4.20)

Proof. By (4.14) and (4.18),

∥∥R(w1 − u) − R(w2 − u)
∥∥

H−1(Th)
≤ 1

6

(∥∥D2R[w1 − w2](w1 − u, w1 − u)
∥∥

H−1(Th)

+
∥∥D2R[w1 − w2](w1 − u, w2 − u)

∥∥
H−1(Th)

+
∥∥D2R[w1 − w2](w2 − u, w2 − u)

∥∥
H−1(Th)

)
�h−1/2

(
‖u − w1‖2

W 2,3(Th) + ‖u − w2‖2
W 2,3(Th)

)
‖w1 − w2‖W 2,3(Th). �

Next, using the contraction estimates of Q and R, the inverse inequality, and the identity (4.9), we can derive
contraction estimates of Mh in the following lemma.

Lemma 4.10 (contraction property of Mh). Define the discrete (closed) ball with center uc,h as

Bρ(uc,h) = {v ∈ Vh; ‖uc,h − v‖H1(Th) ≤ ρ}. (4.21)

Then there exists a constant C1, independent of h, σ, and ρ such that for any v1, v2 ∈ Bρ(uc,h) there holds

‖Mhv1 − Mhv2‖H1(Th) ≤ C1

((
(1 + σ)h�−7/2‖u‖H�(Ω)

)2 +
(
h−5/2ρ

)2 (4.22)

+ (1 + σ)h�−7/2‖u‖H�(Ω) + h−5/2ρ
)
‖v1 − v2‖H1(Th),

where � = min{s, k + 1}.

Proof. It follows from (4.9), (4.2), and (4.19)–(4.20) that

‖Mhv1 − Mhv2‖H1(Th) =
∥∥∥L−1

h

(
R(v1 − u) − R(v2 − u) + Q(v1 − u) − Q(v2 − u)

)∥∥∥
H1(Th)

� ‖R(v1 − u) − R(v2 − u)‖H−1(Th) + ‖Q(v1 − u) − Q(v2 − u)‖H−1(Th)

� h−1/2

((
‖u − v1‖H2(Th) + ‖u − v2‖H2(Th)

)
‖v1 − v2‖H2(Th)

+
(
‖u − v1‖2

W 2,3(Th) + ‖u − v2‖2
W 2,3(Th)

)
‖v1 − v2‖W 2,3(Th)

)
.
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Hence by the inverse inequality (2.10), (4.4)–(4.5) and (4.21), we have

‖Mhv1 − Mhv2‖H1(Th) � h−1/2

(
h−1

(
‖u − v1‖H2(Th) + ‖u − v2‖H2(Th)

)

+ h−3/2
(
‖u − v1‖2

W 2,3(Th) + ‖u − v2‖2
W 2,3(Th)

))
‖v1 − v2‖H1(Th)

� h−1/2

(
h−1

(
‖u − uc,h‖H2(Th) + h−1ρ

)

+ h−3/2
(
‖u − uc,h‖2

W 2,3(Th) + h−3ρ2
))

‖v1 − v2‖H1(Th)

�
((

(1 + σ)h�−7/2‖u‖H�(Ω)

)2 +
(
h−5/2ρ

)2
+ (1 + σ)h�−7/2‖u‖H�(Ω) + h−5/2ρ

)
‖v1 − v2‖H1(Th). �

Lemma 4.11 (mapping property of Mh). For any v ∈ Bρ(uc,h), there holds

‖uc,h − Mhv‖H1(Th) ≤ C2

(
(1 + σ)3h3�−8‖u‖3

H�(Ω) + h−5ρ3 + (1 + σ)2h2�−9/2‖u‖2
H�(Ω) + h−5/2ρ2

)
, (4.23)

where C2 > 0 is independent of h, σ, and ρ.

Proof. By (4.8), (4.2), and (4.19)–(4.20), we have

‖uc,h − Mhv‖H1(Th) ≤
∥∥L−1

h

(
R(v − u)

)∥∥
H1(Th)

+
∥∥L−1

h

(
Q(v − u)

)∥∥
H1(Th)

� ‖R(v − u)‖H−1(Th) + ‖Q(v − u)‖H−1(Th)

� h−1/2
(
‖u − v‖3

W 2,3(Th) + ‖u − v‖2
H2(Th)

)
.

Therefore, we obtain by (4.21), the inverse inequality (2.10), and (4.4)–(4.5)

‖uc,h − Mhw‖H1(Th) � h−1/2
(
‖u − uc,h‖3

W 2,3(Th) + h− 9
2 ρ3 + ‖u − uc,h‖2

H2(Th) + h−2ρ2
)

�
(
(1 + σ)3h3�−8‖u‖3

H�(Ω) + h−5ρ3

+ (1 + σ)2h2�−9/2‖u‖2
H�(Ω) + h−5/2ρ2

)
. �

Theorem 4.12 (main result I). There exists an h0(σ) > 0 such that for h ≤ h0(σ), equation (3.10) has a
solution uh satisfying the estimate

‖u − uh‖H1(Th)+h‖u − uh‖H2(Th) + h3/2‖u − uh‖W 2,3(Th) � (1 + σ)h�−1‖u‖H�(Ω). (4.24)

Proof. Since s > 7/2 and k ≥ 3, we may choose h0(σ) > 0 such that h ≤ h0(σ) implies

δ := 2 max{C1, C2}
((

(1 + σ)h�−7/2‖u‖H�(Ω)

)2 + (1 + σ)h�−7/2‖u‖H�(Ω)

)
< 1. (4.25)

Fix h ≤ h0(σ), set

ρ0 = (1 + σ)h�−1‖u‖H�(Ω), (4.26)
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and let v1, v2 ∈ Bρ0(uc,h). We then have by (4.22) and (4.25)–(4.26)

‖Mhv1 − Mhv2‖H1(Th) ≤ C1

((
(1 + σ)h�−7/2‖u‖H�(Ω)

)2 +
(
h−5/2ρ0

)2 (4.27)

+ (1 + σ)h�−7/2‖u‖H�(Ω) + h−5/2ρ0

)
‖v1 − v2‖H1(Th)

= 2C1

((
(1 + σ)h�−7/2‖u‖H�(Ω)

)2 + (1 + σ)h�−7/2‖u‖H�(Ω)

)
‖v1 − v2‖H1(Th)

≤ δ‖v1 − v2‖H1(Th).

Moreover by (4.23) and (4.25)–(4.26), for any v ∈ Bρ0(uc,h), we have

‖uc,h − Mhv‖H1(Th) ≤ C2

(
(1 + σ)3h3�−8‖u‖3

H�(Ω) + h−5ρ3
0 + (1 + σ)2h2�−9/2‖u‖2

H�(Ω) + h−5/2ρ2
0

)
(4.28)

= 2C2

((
(1 + σ)h�−7/2‖u‖H�(Ω)

)2 + (1 + σ)h�−7/2‖u‖H�(Ω)

)
ρ0 ≤ ρ0.

It then follows from (4.27) and (4.28) that Mh has a unique fixed point uh in Bρ0(uc,h) which is a solution
to (3.10). To obtain the estimates (4.24), we use the triangle inequality, (4.4)–(4.5), and (4.26) to conclude

‖u − uh‖H1(Th) ≤ ‖u − uc,h‖H1(Th) + ρ0 � (1 + σ)h�−1‖u‖H�(Ω),

and

h1/2‖u − uh‖W 2,3(Th) + ‖u − uh‖H2(Th) � h1/2‖u − uc,h‖W 2,3(Th) + ‖u − uc,h‖H2(Th) + h−1ρ0

� (1 + σ)h�−2‖u‖H�(Ω). �

Theorem 4.13 (main result II). In addition to the hypotheses of Theorem 4.12, suppose u ∈ W 3,∞(Ω). Then
there holds

‖u − uh‖L2(Ω) � (1 + σ)2
(
h�‖u‖H�(Ω) + h2�−9/2‖u‖2

H�(Ω) + (1 + σ)h3�−8‖u‖3
H�(Ω)

)
. (4.29)

Proof. Let ζ ∈ H1(Ω) be the solution to the following problem

−∇ ·
(
cof(D2u)∇ζ

)
= u − uh in Ω, (4.30a)

ζ = 0 on ∂Ω. (4.30b)

Since u ∈ W 3,∞(Ω) we have cof(D2u) ∈ [W 1,∞(Ω)]3×3. Thus by elliptic regularity theory [13, 19], we have

‖ζ‖H2(Ω) � ‖u − uh‖L2(Ω). (4.31)

Let ζh ∈ Vh be chosen such that (cf. [5], Thm. 3.2)

‖ζ − ζh‖H1(Th) � h‖ζ‖H2(Ω), ‖ζh‖H1(Th) � ‖ζ‖H2(Ω). (4.32)

We then have by (4.30)

‖u − uh‖2
L2(Ω) =

〈
L(u − uh), ζ − ζh

〉
+
〈
L(u − uh), ζh

〉
. (4.33)

For the first term, we use (4.3), (4.31)–(4.32), and (4.24) to obtain the bound〈
L(u − uh), ζ − ζh

〉
� (1 + σ)‖u − uh‖H1(Th)‖ζ − ζh‖H1(Th) (4.34)

� (1 + σ)2h�‖u‖H�(Ω)‖u − uh‖L2(Ω).
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To bound the second term in (4.33), we first note that by (4.1) and (4.8)〈
L(u − uh), ζh

〉
=
〈
Lh(uc,h − uh), ζh

〉
=
〈
Lh(uc,h − Mhuh), ζh

〉
=
〈
R(uh − u) + Q(uh − u), ζh

〉
.

Therefore we have by (4.19)–(4.20), (4.31)–(4.32), and (4.24),〈
L(u − uh), ζh

〉
≤
(
‖R(uh − u)‖H−1(Th) + ‖Q(uh − u)‖H−1(Th)

)
‖ζh‖H1(Th) (4.35)

� h−1/2
(
‖u − uh‖3

W 2,3(Th) + ‖u − uh‖2
H2(Th)

)
‖ζ‖H2(Ω)

�
(
(1 + σ)3h3�−8‖u‖3

H�(Ω) + (1 + σ)2h2�−9/2‖u‖2
H�(Ω)

)
‖u − uh‖L2(Ω).

Applying the estimates (4.34)–(4.35) to (4.33) and dividing by ‖u − uh‖L2(Ω), we obtain (4.29). �

Remark 4.14. Since � > 7/2, the error estimate (4.29) is of higher order than (4.24). Moreover, the estimate
(4.29) is of the optimal order k + 1 provided s ≥ k + 1 and k ≥ 4.

5. Numerical experiments

In this section, we perform some numerical tests that back up the theoretical results proved in the previous
section. Following similar ideas to those presented in [5], we apply the vanishing moment methodology [15, 22]
in order to obtain good initial guesses for the Newton solver in our computations. The crux of the vanishing
moment method is to approximate fully nonlinear PDEs by higher order quasi-linear PDEs, in particular, fourth
order PDEs. For the case of the Monge-Ampère equation (1.1) the vanishing moment approximation is defined
to be the solution to the following fourth order problem:

−εΔ2uε + det(D2uε) = f 0 < ε  1, (5.1)

along with appropriate boundary conditions.
The finite element method for (5.1) is defined as seeking uε

h ∈ Vh such that

εAhuε
h + Fhuε

h = 0, (5.2)

where

〈
Ahv, w

〉
=
∫

Ω

D2
hv : D2

hw dx −
∑

F∈Fi
h

∫
F

({{
∂2

nnv
}}[[

∇w
]]

+
[[
∇v

]]{{
∂2

nnw
}}

− σ
1

hF

[[
∇v

]][[
∇w

]])
ds ∀v, w ∈ Vh,

and

{{
∂2

nnw
}}∣∣

F =
1
2
(
D2

hw+n+ · n+

∣∣
F + D2

hw−n− · n−
∣∣
F
)

F = ∂T + ∩ ∂T− ∈ F i
h

denotes the average of the second order normal derivative of w.

5.1. Example 1

In this test, we solve (3.10) for varying values of h and k, and choose our data and parameters such that the
exact solution is given by

u = e(x2+y2+z2)/2, Ω = (0, 1)3, σ = 150.
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Table 1. Example 1. Numerical errors and rates of convergence for a smooth solution on the
unit cube.

h ‖u − uh‖L2(Ω) Rate |u − uh|H1(Ω) Rate ‖D2
h(u − uh)‖L2(Ω) Rate

k = 2 1/4 3.60E-04 1.32E-02 4.56E-01
1/8 4.05E-05 3.15 3.23E-03 2.02 2.24E-01 1.02
1/12 1.06E-05 3.30 1.29E-03 2.26 1.43E-01 1.11
1/16 4.88E-06 2.70 7.26E-04 2.01 1.07E-01 1.01
1/20 2.67E-06 2.71 4.50E-04 2.14 8.44E-02 1.06

k = 3 1/4 1.63E-05 3.85E-04 3.23E-02
1/8 9.86E-07 4.05 4.89E-05 2.98 7.58E-03 2.09
1/12 1.53E-07 4.60 1.15E-05 3.57 3.00E-03 2.29
1/16 4.71E-08 4.09 4.88E-06 2.97 1.67E-03 2.04

Table 2. Example 1. #DOFs, Max errors, and CPU time for a smooth solution on the unit cube.

h # Elements #DOFs ‖u − uh‖L∞(Ω) CPU time (s)

k = 2 1/4 943 1581 9.12E-03 3.89
1/8 8434 12611 2.29E-03 38.55
1/12 29 761 42 798 4.49E-04 140.89
1/16 70 418 99 436 2.73E-04 355.78
1/20 139 588 195 110 1.21E-04 803.47

k = 3 1/4 943 4952 4.14E-04 28.78
1/8 8434 40 985 5.71E-05 140.52
1/12 29 761 140 861 7.52E-06 874.57
1/16 70 418 329 244 6.36E-06 2758.98

In order to obtain some good initial guess, we solve (5.2) with ε-values 10−1, 10−3, 10−5, 10−7, and 0, using
each previous solution as our initial guess (we take u = x2

1 + x2
2 + x2

3 as our initial guess for the first iteration
with ε = 10−1 in all of our numerical tests). After computing the solution of (3.10) we calculate the L2, H1, and
piecewise H2 error and record the errors in Table 1. As predicted by the theoretical results in Theorem 4.12,
we observe third and second order convergence in the H1 and H2-norms, respectively, using cubic polynomials.
Furthermore, the numerical tests also indicate that the method convergences optimally in the L2 norm when
using cubic polynomials and converges using quadratic polynomials.

In Table 2 we list the CPU time to compute the solution as well as the numerical error in the L∞ norm. For
comparison, we list the data taken from [16], where a wide-stencil finite difference scheme was used for the same
test problem. Comparing the CPU times against the number of degrees of freedom in Tables 2, 3, we observe
that the finite difference scheme is faster than the proposed finite element method. This is likely due to (a)
the vanishing moment method creates additional overhead and (b) the assembly of the stiffness matrix is more
expensive for the finite element method. However, comparing the CPU time against the L∞ error, the finite
element method is superior than that of the finite difference scheme. This behavior is likely due to the fact that
the finite element method is of higher order, and therefore more efficient for smooth solutions.
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Table 3. #DOFs, Max errors, and CPU time of the wide-stencil difference scheme reported in [16].

N #DOFs ‖u − uN‖L∞(Ω) CPU time (s)

7 343 1.51E-02 0.1
11 1331 1.40E-02 0.1
15 3375 1.32E-02 0.5
21 9261 1.27E-02 3.6
31 29 791 1.25E-02 34.7

Table 4. Example 2. Numerical errors and rates of convergence for a smooth solution on an
ellipsoid.

h ‖u − uh‖L2(Ω) Rate |u − uh|H1(Ω) Rate ‖D2
h(u − uh)‖L2(Ω) Rate

k = 2 1/2 6.34E-02 3.60E-01 1.71E+00
1/4 5.17E-02 0.29 2.91E-01 0.31 1.43E+00 0.25
1/8 2.79E-03 4.21 2.89E-02 3.33 5.44E-01 1.40
1/12 8.46E-04 2.94 1.26E-02 2.05 3.38E-01 1.17
1/16 3.18E-04 3.40 5.70E-03 2.75 2.12E-01 1.62

k = 3 1/2 1.72E-03 2.44E-02 4.76E-01
1/4 3.62E-04 2.25 7.30E-03 1.74 2.17E-01 1.13
1/8 2.80E-05 3.69 1.14E-03 2.68 7.14E-02 1.60
1/12 1.05E-05 2.43 5.69E-04 1.72 4.27E-02 1.27
1/14 4.88E-06 4.94 3.01E-04 4.12 2.98E-02 2.33

5.2. Example 2

For our second test, we compute (3.10) on an ellipsoid. Namely, we choose our data, domain, and parameters
as

u = ex6/6+(y2+z2)/2, Ω = {(x, y, z); x2 + 4y2 + 4z2 = 1}, σ = 150.

We note that our finite element space is constructed such that on curved elements, we use polynomial functions
of degree ≤k in the curvilinear coordinates for T , which in this case, are isoparametric finite elements.

After solving (3.10), we list the errors in Table 4. In accordance to Theorem 4.12, we observe optimal rates of
convergence in the H2 and H1 norms when using cubic polynomials. Similar to the previous test, the numerical
tests also indicate that the method converges optimally in the L2 norm and is convergent when using quadratic
polynomials.

5.3. Example 3

For the last test we solve (3.10) using quadratic polynomials with data

u =
(x2 + y2 + z2)

3
4

3
, Ω = (0, 1)3, σ = 150.

Unlike the previous two tests, the solution to this problem is not smooth as it has a singularity at the origin.
Nevertheless, we are still able to compute the solution and the numerical errors listed in Table 5 indicate the
method converges with order O(h2), O(h2), and O(h) in the L2-norm, H1-norm and H2-norm respectively.
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Figure 1. Example 2. Cross section plot of the error using cubic polynomials with h = 1/8.

Table 5. Example 3. Numerical errors and rates of convergence for a non-smooth solution on
the unit cube.

h ‖u − uh‖L2(Ω) Rate |u − uh|H1(Ω) Rate ‖D2
h(u − uh)‖L2(Ω) Rate

k = 2 1/2 1.73E-04 3.55E-03 8.82E-02
1/4 4.68E-05 1.89 1.59E-03 1.16 6.01E-02 0.55
1/8 5.66E-06 3.05 3.80E-04 2.07 3.04E-02 0.98
1/12 2.32E-06 2.19 1.84E-04 1.79 2.21E-02 0.78
1/16 1.15E-06 2.46 1.04E-04 1.98 1.67E-02 0.96
1/20 7.12E-07 2.14 6.63E-05 2.02 1.32E-02 1.06

6. Concluding remarks

In this paper, we developed and studied finite element approximations of the three dimensional Monge-
Ampère equation. Using a fixed point argument, we established existence of a solution to the scheme as well
as derived quasi-optimal error estimates provided that the solution is sufficiently smooth. The numerical tests
confirm the theory and also suggest that the method works for some non-classical solutions as well.

We end this paper by remarking that the methodology and analysis presented here can naturally be extended
to other finite element methods. For example, the corresponding discontinuous Galerkin (DG) method to (3.10)
is to find a function uh ∈ V DG

h such that

∑
T∈Th

∫
T

(
f − det(D2uh)

)
v dx +

∑
e∈Fi

h

∫
e

( σ

hF

[[
uh

]]
·
[[
vh

]]
(6.1)

+
[[{{

cof(D2uh)
}}
∇uh

]]{{
v
}}

− γ
{{

cof(D2uh)∇vh

}}
·
[[
uh

]])
ds

+
∑

e∈Fb
h

∫
e

( σ

hF
(uh − g)v − γ

[[
cof(D2uh)∇v

]]
(uh − g)

)
ds = 0 ∀v ∈ V DG

h ,



FINITE ELEMENT APPROXIMATIONS OF THE THREE DIMENSIONAL MONGE-AMPÈRE EQUATION 999

where the jump of a scalar function is defined as[[
v
]]∣∣

F = v+n+ + v−n− F = ∂T + ∩ ∂T− ∈ F i
h,

V DG
h is the space of totally discontinuous piecewise polynomails, and γ is a parameter that can take the values

{1,−1, 0}, which correspond to the symmetric interior penalty method (γ = 1), non-symmetric interior penalty
method (γ = −1), and incomplete interior penalty method (γ = 0). We refer the interested reader to the
reference [23] for the derivation of the method (6.1). Using similar ideas to those presented here, we expect
results similar to those stated in Theorems 4.12 and 4.13 also hold for the DG method (6.1).

Appendix A. Proof of Lemma 4.1

To prove that Lh is invertible as well as the stability estimate (4.2), it suffices to show that Lh is coercive
over Vh with respect to the norm ‖ · ‖H1(Th).

By (3.9) we have for v ∈ Vh,

〈
Lhv, v

〉
=
∫

Ω

(
cof(D2u)∇v

)
· ∇v dx − 2

∑
F∈Fb

h

∫
F

[[
cof(D2u)∇v

]]
v ds + σ

∑
F∈Fb

h

1
hF

‖v‖2
L2(F). (A.1)

Since u is strictly convex, the matrix cof(D2u) is positive definite. Thus, there exists a constant λ > 0 such that∫
Ω

(
cof(D2u)∇v

)
· ∇v dx ≥ λ‖∇v‖2

L2(Ω). (A.2)

Next since u ∈ Hs(Ω) with s > 7/2 we have u ∈ W 2,∞(Ω) by a Sobolev embedding. Therefore by the trace,
inverse and Cauchy-Schwarz inequalities, we have

2
∑

F∈Fb
h

∫
F

[[
cof(D2u)∇hv

]]
v ds ≤ 2‖u‖2

W 2,∞(Ω)

∑
F∈Fb

h

‖∇v‖L2(F)‖v‖L2(F) (A.3)

≤ C

⎛
⎝ ∑

F∈Fb
h

hF‖∇v‖2
L2(F)

⎞
⎠

1/2⎛
⎝ ∑

F∈Fb
h

h−1
F ‖v‖2

L2(F)

⎞
⎠

1/2

≤ C‖∇v‖L2(Ω)

⎛
⎝ ∑

F∈Fb
h

h−1
F ‖v‖2

L2(F)

⎞
⎠

1/2

≤ λ

2
‖∇v‖2

L2(Ω) +
C

λ

∑
F∈Fb

h

h−1
F ‖v‖2

L2(F).

It then follows from (A.1)–(A.3) that

〈
Lhv, v

〉
≥ λ

2
‖∇v‖2

L2(Ω) +

(
σ − C

λ

) ∑
F∈Fb

h

h−1
F ‖v‖2

L2(F).

Thus by taking σ0 sufficiently large, we have for σ ≥ σ0 and a scaling argument,

‖v‖2
H1(Th) �

〈
Lhv, v

〉
. (A.4)

The invertibility of Lh as well as the stability estimate (4.2) immediately follow from (A.4) and (2.4).
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To show the bound (4.3), we have by (3.9), the Cauchy-Schwarz inequality and (2.3), for w ∈ H2(Th)∩H1(Ω)
and v ∈ Vh that

〈
Lw, v

〉
≤ ‖u‖2

W 2,∞(Ω)

[
‖∇w‖L2(Ω)‖∇v‖L2(Ω) +

∑
F∈Fb

h

‖∇w‖L2(F)‖v‖L2(F)

+
∑

F∈Fb
h

‖w‖L2(F)‖∇v‖L2(F) + σ
∑

F∈Fb
h

1
hF

‖w‖L2(F)‖v‖L2(F)

]

�

⎡
⎢⎣‖∇w‖L2(Ω)‖∇v‖L2(Ω) +

⎛
⎝ ∑

F∈Fb
h

hF‖∇w‖2
L2(F)

⎞
⎠

1/2⎛
⎝ ∑

F∈Fb
h

h−1
F ‖v‖2

L2(F)

⎞
⎠

1/2

+

⎛
⎝ ∑

F∈Fb
h

h−1
F ‖w‖2

L2(F)

⎞
⎠

1/2⎛
⎝ ∑

F∈Fb
h

h−1
F ‖∇v‖2

L2(F)

⎞
⎠

1/2

+σ

⎛
⎝ ∑

F∈Fb
h

h−1
F ‖w‖2

L2(F)

⎞
⎠

1/2⎛
⎝ ∑

F∈Fb
h

h−1
F ‖v‖2

L2(F)

⎞
⎠

1/2
⎤
⎥⎦

� (1 + σ)‖w‖H1(Th)‖v‖H1(Th).

The bound (4.3) then follows from (2.4).
We now show the error estimates (4.4). First by (4.2), (4.3) and (4.1), we have for any v ∈ Vh,

‖u − uc,h‖H1(Th) ≤ ‖u − v‖H1(Th) +
∥∥L−1

h Lh(v − uc,h)
∥∥

H1(Th)

� ‖u − v‖H1(Th) + ‖L(v − u)‖H−1(Th)

� (1 + σ)‖u − v‖H1(Th).

It then follows from Lemma 2.8 and scaling that

‖u − uc,h‖H1(Th) � (1 + σ)h�−1‖u‖H�(Ω). (A.5)

Next by the triangle inequality and Lemma 2.7, we have for any v ∈ Vh

‖u − uc,h‖H2(Th) � ‖u − v‖H2(Th) + h−1‖uc,h − v‖H1(Th)

� ‖u − v‖H2(Th) + h−1‖u − v‖H1(Th) + h−1‖u − uc,h‖H1(Th).

Thus by Lemma 2.8 and (A.5) we obtain

‖u − uc,h‖H2(Th) � (1 + σ)h�−2‖u‖H�(Ω).
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[29] A. Žeńı̌sek, Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theory 7 (1973) 334–351.

[30] V. Zheligovsky, O. Podvigina and U. Frisch, The Monge-Ampère equation: various forms and numerical solutions. J. Comput.
Phys. 229 (2010) 5043–5061.


	Introduction
	Notation and some preliminary results
	Derivation of the finite element method
	Convergence analysis
	Strategy and some preliminary estimates
	Main results

	Numerical experiments
	Example 1
	Example 2
	Example 3

	Concluding remarks
	Appendix A. Proof of Lemma 4.1
	References

