We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions with bounded hessian, and we give an upper and a lower bound in terms of the Blake and Zisserman energy. We prove a sharp bound by exhibiting the discrete-to-continuous Γ-limit for a special class of functions, showing the appearance new ‘shear' terms in the energy, which are a genuinely two-dimensional effect.
Mots clés : computer vision, finite-difference schemes, gamma-convergence, free-discontinuity problems
@article{M2AN_2012__46_2_389_0, author = {Braides, Andrea and Defranceschi, Anneliese and Vitali, Enrico}, title = {A compactness result for a second-order variational discrete model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {389--410}, publisher = {EDP-Sciences}, volume = {46}, number = {2}, year = {2012}, doi = {10.1051/m2an/2011043}, mrnumber = {2855647}, zbl = {1272.49095}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2011043/} }
TY - JOUR AU - Braides, Andrea AU - Defranceschi, Anneliese AU - Vitali, Enrico TI - A compactness result for a second-order variational discrete model JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 389 EP - 410 VL - 46 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2011043/ DO - 10.1051/m2an/2011043 LA - en ID - M2AN_2012__46_2_389_0 ER -
%0 Journal Article %A Braides, Andrea %A Defranceschi, Anneliese %A Vitali, Enrico %T A compactness result for a second-order variational discrete model %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 389-410 %V 46 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2011043/ %R 10.1051/m2an/2011043 %G en %F M2AN_2012__46_2_389_0
Braides, Andrea; Defranceschi, Anneliese; Vitali, Enrico. A compactness result for a second-order variational discrete model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 2, pp. 389-410. doi : 10.1051/m2an/2011043. http://www.numdam.org/articles/10.1051/m2an/2011043/
[1] A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36 (2004) 1-37. | MR | Zbl
and ,[2] Finite difference approximation of energies in fracture mechanics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000) 671-709. | Numdam | MR | Zbl
, and ,[3] Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. | MR | Zbl
and ,[4] On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6 (1992) 105-123. | MR | Zbl
and ,[5] Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000). | MR | Zbl
, and ,[6] Variational approximation of a second order free discontinuity problem in computer vision. SIAM J. Math. Anal. 32 (2001) 1171-1197. | MR | Zbl
, and ,[7] Approximation of a functional depending on jumps and corners. Boll. Un. Mat. Ital. B 8 (1994) 151-181. | MR | Zbl
and ,[8] Visual Reconstruction. MIT Press, Cambridge, MA (1987). | MR
and ,[9] Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609-646. | MR | Zbl
and ,[10] Rotationally symmetric operators for surface interpolation. Computer Vision, Graphics, and Image Processing 22 (1983) 70-94. | Zbl
and ,[11] Lower semicontinuity conditions for functionals on jumps and creases. SIAM J. Math Anal. 26 (1995) 1184-1198. | MR | Zbl
,[12] Approximation of Free-discontinuity Problems. Springer Verlag, Berlin (1998). | MR | Zbl
,[13] Γ-convergence for Beginners. Oxford University Press, Oxford (2002). | MR | Zbl
,[14] Discrete approximation of functionals with jumps and creases, in Homogenization, 2001 (Naples) GAKUTO Internat. Ser. Math. Sci. Appl. 18. Tokyo, Gakkōtosho (2003) 147-153. | MR | Zbl
,[15] Limits of discrete systems with long-range interactions. J. Convex Anal. 9 (2002) 363-399. | MR | Zbl
and ,[16] Overall properties of a discrete membrane with randomly distributed defects. Arch. Ration. Mech. Anal. 189 (2008) 301-323. | MR | Zbl
and ,[17] Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal. 180 (2006) 151-182. | MR | Zbl
, and ,[18] A derivation of linear elastic energies from pair-interaction atomistic systems. Netw. Heterog. Media 2 (2007) 551-567 | MR | Zbl
, and ,[19] A second order model in image segmentation: Blake and Zisserman functional, in Variational Methods for Discontinuous Structures (Como, 1994), Progr. Nonlin. Diff. Eq. Appl. 25, edited by R. Serapioni and F. Tomarelli. Basel, Birkhäuser (1996) 57-72. | MR | Zbl
, and ,[20] Strong minimizers of Blake and Zisserman functional. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997) 257-285. | Numdam | MR | Zbl
, and ,[21] Density estimates and further properties of Blake and Zisserman functional, in From Convexity to Nonconvexity, Nonconvex Optim. Appl. 55, edited by R. Gilbert and Pardalos. Kluwer Acad. Publ., Dordrecht (2001) 381-392 | MR | Zbl
, and ,[22] Euler equations for Blake and Zisserman functional. Calc. Var. Partial Diff. Eq. 32 (2008) 81-110. | MR | Zbl
, and ,[23] A Dirichlet problem with free gradient discontinuity. Adv. Mat. Sci. Appl. 20 (2010) 107-141 | MR | Zbl
, and ,[24] A candidate local minimizer of Blake and Zisserman functional. J. Math Pures Appl. 96 (2011) 58-87 | MR | Zbl
, and ,[25] Un théorème de Γ-convergence pour la segmentation des signaux. C. R. Acad. Sci., Paris, Ser. I 314 (1992) 191-196. | MR | Zbl
,[26] Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55 (1995) 827-863. | MR | Zbl
,[27] Finite-differences approximation of the Mumford-Shah functional. ESAIM: M2AN 33 (1999) 261-288. | Numdam | MR | Zbl
,[28] Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM: M2AN 33 (1999) 651-672. | Numdam | MR | Zbl
and ,[29] The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam (1978). | MR | Zbl
,[30] A Γ-convergence result for the two-gradient theory of phase transitions. Comm. Pure Appl. Math. 55 (2002) 857-936. | MR | Zbl
, and[31] Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE PAMI 6 (1984) 721-724. | Zbl
and ,[32] From Images to Surfaces. The MIT Press Classic Series. MIT, Cambridge (1981).
,[33] Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. | MR | Zbl
and ,[34] Lower Semicontinuity in SBH. Mediterranean J. Math. 5 (2008) 221-235. | MR | Zbl
and ,[35] On the derivation of linear elasticity from atomistic models. Netw. Heterogen. Media 4 (2009) 789-812. | MR | Zbl
,Cité par Sources :