This paper considers Schrödinger operators, and presents a probabilistic interpretation of the variation (or shape derivative) of the Dirichlet groundstate energy when the associated domain is perturbed. This interpretation relies on the distribution on the boundary of a stopped random process with Feynman-Kac weights. Practical computations require in addition the explicit approximation of the normal derivative of the groundstate on the boundary. We then propose to use this formulation in the case of the so-called fixed node approximation of Fermion groundstates, defined by the bottom eigenelements of the Schrödinger operator of a Fermionic system with Dirichlet conditions on the nodes (the set of zeros) of an initially guessed skew-symmetric function. We show that shape derivatives of the fixed node energy vanishes if and only if either (i) the distribution on the nodes of the stopped random process is symmetric; or (ii) the nodes are exactly the zeros of a skew-symmetric eigenfunction of the operator. We propose an approximation of the shape derivative of the fixed node energy that can be computed with a Monte-Carlo algorithm, which can be referred to as Nodal Monte-Carlo (NMC). The latter approximation of the shape derivative also vanishes if and only if either (i) or (ii) holds.
Mots clés : Schrödinger operator, groundstate, shape derivatives, Feynman-Kac formula, quantum Monte-Carlo methods, Fermion nodes, fixed node approximation
@article{M2AN_2010__44_5_977_0, author = {Rousset, Mathias}, title = {On a probabilistic interpretation of shape derivatives of {Dirichlet} groundstates with application to {Fermion} nodes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {977--995}, publisher = {EDP-Sciences}, volume = {44}, number = {5}, year = {2010}, doi = {10.1051/m2an/2010049}, mrnumber = {2731400}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010049/} }
TY - JOUR AU - Rousset, Mathias TI - On a probabilistic interpretation of shape derivatives of Dirichlet groundstates with application to Fermion nodes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 977 EP - 995 VL - 44 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010049/ DO - 10.1051/m2an/2010049 LA - en ID - M2AN_2010__44_5_977_0 ER -
%0 Journal Article %A Rousset, Mathias %T On a probabilistic interpretation of shape derivatives of Dirichlet groundstates with application to Fermion nodes %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 977-995 %V 44 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010049/ %R 10.1051/m2an/2010049 %G en %F M2AN_2010__44_5_977_0
Rousset, Mathias. On a probabilistic interpretation of shape derivatives of Dirichlet groundstates with application to Fermion nodes. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 5, pp. 977-995. doi : 10.1051/m2an/2010049. http://www.numdam.org/articles/10.1051/m2an/2010049/
[1] A pedagogical introduction to Quantum Monte Carlo, in Mathematical Models and Methods for Ab Initio Quantum Chemistry, M. Defranceschi and C. Le Bris Eds., Lecture Notes in Chemistry 74, Springer (2000). | Zbl
and ,[2] Zero-variance zero-bias principle for observables in quantum Monte Carlo: Application to forces. J. Chem. Phys. 119 (2003) 10536-10552.
and ,[3] Diffusion Monte-Carlo with a fixed number of walkers. Phys. Rev. E 61 (2000) 4566-4575.
, and ,[4] Total forces in the diffusion Monte Carlo method with nonlocal pseudopotentials. Phys. Rev. B 78 (2008) 035134.
and ,[5] Nodal Pulay terms for accurate diffusion quantum Monte Carlo forces. Phys. Rev. B 77 (2008) 085111.
, and ,[6] Quantum Monte-Carlo simulations of Fermions. A mathematical analysis of the fixed-node approximation. Math. Mod. Meth. Appl. Sci. 16 (2006) 1403-1440. | Zbl
, and ,[7] Méthodes mathématiques en chimie quantique : Une introduction. Springer-Verlag (2006). | Zbl
, and ,[8] Computing accurate forces in quantum Monte Carlo using Pulay's corrections and energy minimization. J. Chem. Phys. 118 (2003) 7193-7201.
, and ,[9] Fermion nodes. J. Stat. Phys. 63 (1991) 1237-1267.
,[10] Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45 (1980) 566-569.
and ,[11] Monte-Carlo simulation of a many-fermion study. Phys. Rev. B 16 (1977) 3081-3099.
, and ,[12] Boundary sensitivities for diffusion processes in time dependent domains. Appl. Math. Optim. 54 (2006) 159-187. | Zbl
, and ,[13] Feynman-Kac Formulae, Genealogical and Interacting Particle Systems with Applications. Springer Series Probability and its Applications, Springer (2004). | Zbl
,[14] Branching and Interacting Particle Systems approximations of Feynman-Kac formulae with applications to nonlinear filtering. Lecture Notes Math. 1729 (2000) 1-145. | Numdam | Zbl
and ,[15] Particle approximations of Lyapounov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171-208. | Numdam | Zbl
and ,[16] Sequential Monte-Carlo Methods in Practice. Series Statistics for Engineering and Information Science, Springer (2001). | Zbl
, and ,[17] Sequential Monte Carlo samplers. J. Roy. Stat. Soc. B 68 (2006) 411-436. | Zbl
, and ,[18] Correlated sampling in quantum Monte Carlo: A route to forces. Phys. Rev. B 61 (2000) R16291-R16294.
and ,[19] On the perurbation of eigenvalues for the p-laplacian. C. R. Acad. Sci. Paris, Sér. 1 332 (2001) 893-898. | Zbl
and ,[20] Elliptic Partial Differential Equation of Second Order. Springer-Verlag (1983). | Zbl
and ,[21] Monte Carlo Methods in ab initio quantum chemistry. World Scientific (1994).
, and ,[22] An improved algorithm of fixed-node quantum Monte Carlo method with self-optimization process. J. Mol. Struct. Theochem 726 (2005) 93-97.
and ,[23] Brownian motion and stochastic calculus, Graduate Texts in Mathematics 113. Second edition, Springer-Verlag, New York (1991). | Zbl
and ,[24] Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften 132. Second edition Springer-Verlag, Berlin (1976). | Zbl
,[25] Methods of modern mathematical physics. IV. Analysis of operators. Academic Press (Harcourt Brace Jovanovich Publishers), New York (1978). | Zbl
and ,[26] On the control of an interacting particle estimation of Schrödinger ground states. SIAM J. Math. Anal. 38 (2006) 824-844. | Zbl
,[27] Optimization of quantum Monte Carlo wave functions by energy minimization. J. Chem. Phys. 126 (2007) 084102.
and ,[28] Zero-variance zero-bias quantum Monte Carlo estimators of the spherically and system-averaged pair density. J. Chem. Phys. 126 (2007) 244112.
, and ,[29] Energy and variance optimization of many-body wave functions. Phys. Rev. Lett. 94 (2005) 150201.
and ,Cité par Sources :