In this paper we construct a new H(div)-conforming projection-based p-interpolation operator that assumes only Hr(K) -1/2(div, K)-regularity (r > 0) on the reference element (either triangle or square) K. We show that this operator is stable with respect to polynomial degrees and satisfies the commuting diagram property. We also establish an estimate for the interpolation error in the norm of the space -1/2(div, K), which is closely related to the energy spaces for boundary integral formulations of time-harmonic problems of electromagnetics in three dimensions.
Mots-clés : p-interpolation, error estimation, maxwell's equations, boundary element method
@article{M2AN_2011__45_2_255_0, author = {Bespalov, Alexei and Heuer, Norbert}, title = {A new {H(div)-conforming} $p$-interpolation operator in two dimensions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {255--275}, publisher = {EDP-Sciences}, volume = {45}, number = {2}, year = {2011}, doi = {10.1051/m2an/2010039}, zbl = {1277.78031}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010039/} }
TY - JOUR AU - Bespalov, Alexei AU - Heuer, Norbert TI - A new H(div)-conforming $p$-interpolation operator in two dimensions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 255 EP - 275 VL - 45 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010039/ DO - 10.1051/m2an/2010039 LA - en ID - M2AN_2011__45_2_255_0 ER -
%0 Journal Article %A Bespalov, Alexei %A Heuer, Norbert %T A new H(div)-conforming $p$-interpolation operator in two dimensions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 255-275 %V 45 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010039/ %R 10.1051/m2an/2010039 %G en %F M2AN_2011__45_2_255_0
Bespalov, Alexei; Heuer, Norbert. A new H(div)-conforming $p$-interpolation operator in two dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 2, pp. 255-275. doi : 10.1051/m2an/2010039. http://www.numdam.org/articles/10.1051/m2an/2010039/
[1] The h - p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 21 (1987) 199-238. | Numdam | MR | Zbl
and ,[2] Efficient preconditioning for the p-version finite element method in two dimensions. SIAM J. Numer. Anal. 28 (1991) 624-661. | MR | Zbl
, , and ,[3] Optimal error estimation for H(curl)-conforming p-interpolation in two dimensions. SIAM J. Numer. Anal. 47 (2009) 3977-3989. | MR | Zbl
and ,[4] Natural p-BEM for the electric field integral equation on screens. IMA J. Numer. Anal. (2010) DOI:10.1093/imanum/drn072. | MR | Zbl
and ,[5] Thehp - BEMS with quasi-uniform meshes for the electric field integral equation on polyhedral surfaces: a priori error analysis. Appl. Numer. Math. 60 (2010) 705-718. | MR | Zbl
and ,[6] Convergence of the natural hp-BEM for the electric field integral equation on polyhedral surfaces. arXiv:0907.5231 (2009). | MR | Zbl
, and ,[7] Discrete compactness for the p and hp 2D edge finite elements. Math. Models Methods Appl. Sci. 13 (2003) 1673-1687. | MR | Zbl
, and ,[8] Discrete compactness for the hp version of rectangular edge finite elements. SIAM J. Numer. Anal. 44 (2006) 979-1004. | MR | Zbl
, , and ,[9] Discrete compactness for the p -version of discrete differential forms. arXiv:0909.5079 (2009). | MR | Zbl
, , , and ,[10] Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991). | MR | Zbl
and ,[11] Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations. SIAM J. Numer. Anal. 43 (2005) 1-18. | MR | Zbl
,[12] The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numer. Math. 94 (2003) 229-267. | MR | Zbl
and ,[13] On traces for functional spaces related to Maxwell's equations, Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24 (2001) 31-48. | MR | Zbl
and ,[14] Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math. 95 (2003) 459-485. | MR | Zbl
, , and ,[15] Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221-276. | MR | Zbl
and ,[16] On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265 (2010) 297-320. | MR | Zbl
and ,[17] Polynomial extension operators for H1, H(curl) and H(div)-spaces on a cube. Math. Comp. 77 (2008) 1967-1999. | MR | Zbl
, and ,[18] Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations, in Mixed Finite Elements, Compatibility Conditions and Applications, D. Boffi, F. Brezzi, L. Demkowicz, R. Duran, R. Falk and M. Fortin Eds., Lect. Notes in Mathematics 1939, Springer-Verlag, Berlin (2008) 101-158. | Zbl
,[19] L. Demkowicz and I. Babuška, p interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal. 41 (2003) 1195-1208. | MR | Zbl
[20] The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal. 21 (1984) 1180-1207. | MR | Zbl
,[21] Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math. 88 (2001) 485-511. | MR | Zbl
,[22] Discrete compactness for the p-version of tetrahedral edge elements. Seminar for Applied Mathematics, ETH Zürich, Switzerland (2008) arXiv:0901.0761.
,[23] Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York (1972). | MR | Zbl
and ,[24] About traces, extensions and co-normal derivative operators on Lipschitz domains, in Integral Methods in Science and Engineering: Techniques and Applications, C. Constanda and S. Potapenko Eds., Birkhäuser, Boston (2008) 149-160. | MR | Zbl
,[25] Mixed and hybrid methods, in Handbook of Numerical Analysis II, P.G. Ciarlet and J.-L. Lions Eds., Amsterdam, North-Holland (1991) 523-639. | MR | Zbl
and ,Cité par Sources :