A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 1, pp. 169-200.

The standard multilayer Saint-Venant system consists in introducing fluid layers that are advected by the interfacial velocities. As a consequence there is no mass exchanges between these layers and each layer is described by its height and its average velocity. Here we introduce another multilayer system with mass exchanges between the neighboring layers where the unknowns are a total height of water and an average velocity per layer. We derive it from Navier-Stokes system with an hydrostatic pressure and prove energy and hyperbolicity properties of the model. We also give a kinetic interpretation leading to effective numerical schemes with positivity and energy properties. Numerical tests show the versatility of the approach and its ability to compute recirculation cases with wind forcing.

DOI : 10.1051/m2an/2010036
Classification : 35Q30, 35Q35, 76D05
Mots clés : Navier-Stokes equations, Saint-Venant equations, free surface, multilayer system, kinetic scheme
@article{M2AN_2011__45_1_169_0,
     author = {Audusse, Emmanuel and Bristeau, Marie-Odile and Perthame, Beno{\^\i}t and Sainte-Marie, Jacques},
     title = {A multilayer {Saint-Venant} system with mass exchanges for shallow water flows. {Derivation} and numerical validation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {169--200},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {1},
     year = {2011},
     doi = {10.1051/m2an/2010036},
     mrnumber = {2781135},
     zbl = {1290.35194},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2010036/}
}
TY  - JOUR
AU  - Audusse, Emmanuel
AU  - Bristeau, Marie-Odile
AU  - Perthame, Benoît
AU  - Sainte-Marie, Jacques
TI  - A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2011
SP  - 169
EP  - 200
VL  - 45
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2010036/
DO  - 10.1051/m2an/2010036
LA  - en
ID  - M2AN_2011__45_1_169_0
ER  - 
%0 Journal Article
%A Audusse, Emmanuel
%A Bristeau, Marie-Odile
%A Perthame, Benoît
%A Sainte-Marie, Jacques
%T A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2011
%P 169-200
%V 45
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2010036/
%R 10.1051/m2an/2010036
%G en
%F M2AN_2011__45_1_169_0
Audusse, Emmanuel; Bristeau, Marie-Odile; Perthame, Benoît; Sainte-Marie, Jacques. A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 1, pp. 169-200. doi : 10.1051/m2an/2010036. http://www.numdam.org/articles/10.1051/m2an/2010036/

[1] E. Audusse, A multilayer Saint-Venant system: Derivation and numerical validation. Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 189-214. | MR | Zbl

[2] E. Audusse and M.O. Bristeau, Transport of pollutant in shallow water flows: A two time steps kinetic method. ESAIM: M2AN 37 (2003) 389-416. | Numdam | MR | Zbl

[3] E. Audusse and M.O. Bristeau, A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes. J. Comput. Phys. 206 (2005) 311-333. | MR | Zbl

[4] E. Audusse and M.O. Bristeau, Finite-volume solvers for a multilayer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17 (2007) 311-319. | MR | Zbl

[5] E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows. SIAM J. Sci. Comput. 25 (2004) 2050-2065. | MR | Zbl

[6] E. Audusse, M.O. Bristeau and A. Decoene, Numerical simulations of 3d free surface flows by a multilayer Saint-Venant model. Int. J. Numer. Methods Fluids 56 (2008) 331-350. | MR | Zbl

[7] A.J.C. Barré De Saint-Venant, Théorie du mouvement non permanent des eaux avec applications aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147-154. | JFM

[8] F. Bouchut, An introduction to finite volume methods for hyperbolic conservation laws. ESAIM: Proc. 15 (2004) 107-127. | MR | Zbl

[9] F. Bouchut and T. Morales De Luna, An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. ESAIM: M2AN 42 (2008) 683-698. | Numdam | MR | Zbl

[10] F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2 (2004) 359-389. | MR | Zbl

[11] M.O. Bristeau and J. Sainte-Marie, Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 733-759. | MR | Zbl

[12] M.J. Castro, J.A. García-Rodríguez, J.M. González-Vida, J. Macías, C. Parés and M.E. Vázquez-Cendón, Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202-235. | Zbl

[13] M.J. Castro, J. Macías and C. Parés, A q-scheme for a class of systems of coupled conservation laws with source term. application to a two-layer 1-D shallow water system. ESAIM: M2AN 35 (2001) 107-127. | Numdam | MR | Zbl

[14] A. Decoene and J.-F. Gerbeau, Sigma transformation and ALE formulation for three-dimensional free surface flows. Int. J. Numer. Methods Fluids 59 (2009) 357-386. | MR | Zbl

[15] A. Decoene, L. Bonaventura, E. Miglio and F. Saleri, Asymptotic derivation of the section-averaged shallow water equations for river hydraulics. M3AS 19 (2009) 387-417. | MR | Zbl

[16] S. Ferrari and F. Saleri, A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography. ESAIM: M2AN 38 (2004) 211-234. | Numdam | MR | Zbl

[17] FreeFem++ home page, http://www.freefem.org/ff++/index.htm (2009).

[18] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89-102. | MR | Zbl

[19] P.L. Lions, Mathematical Topics in Fluid Mechanics, Incompressible models, Vol. 1. Oxford University Press, UK (1996). | MR | Zbl

[20] F. Marche, Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech. B, Fluids 26 (2007) 49-63. | MR | Zbl

[21] B. Mohammadi, O. Pironneau and F. Valentin, Rough boundaries and wall laws. Int. J. Numer. Methods Fluids 27 (1998) 169-177. | MR | Zbl

[22] O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterw. Port Coast. Ocean Eng. ASCE 119 (1993) 618-638.

[23] D.H. Peregrine, Long waves on a beach. J. Fluid Mech. 27 (1967) 815-827. | Zbl

[24] B. Perthame, Kinetic formulation of conservation laws. Oxford University Press, UK (2002). | MR | Zbl

[25] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201-231. | MR | Zbl

[26] M.J. Salençon and J.M. Thébault, Simulation model of a mesotrophic reservoir (Lac de Pareloup, France): Melodia, an ecosystem reservoir management model. Ecol. model. 84 (1996) 163-187.

[27] N.J. Shankar, H.F. Cheong and S. Sankaranarayanan, Multilevel finite-difference model for three-dimensional hydrodynamic circulation. Ocean Eng. 24 (1997) 785-816.

[28] F. Ursell, The long wave paradox in the theory of gravity waves. Proc. Cambridge Phil. Soc. 49 (1953) 685-694. | MR | Zbl

[29] M.A. Walkley, A numerical Method for Extended Boussinesq Shallow-Water Wave Equations. Ph.D. Thesis, University of Leeds, UK (1999).

Cité par Sources :