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A MULTILAYER SAINT-VENANT SYSTEM WITH MASS EXCHANGES
FOR SHALLOW WATER FLOWS.

DERIVATION AND NUMERICAL VALIDATION ∗

Emmanuel Audusse1, Marie-Odile Bristeau2, Benôıt Perthame2, 3

and Jacques Sainte-Marie2, 4

Abstract. The standard multilayer Saint-Venant system consists in introducing fluid layers that are
advected by the interfacial velocities. As a consequence there is no mass exchanges between these
layers and each layer is described by its height and its average velocity. Here we introduce another
multilayer system with mass exchanges between the neighboring layers where the unknowns are a total
height of water and an average velocity per layer. We derive it from Navier-Stokes system with an
hydrostatic pressure and prove energy and hyperbolicity properties of the model. We also give a kinetic
interpretation leading to effective numerical schemes with positivity and energy properties. Numerical
tests show the versatility of the approach and its ability to compute recirculation cases with wind
forcing.
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1. Introduction

Due to computational issues associated with the free surface Navier-Stokes or Euler equations, the simulations
of geophysical flows are often carried out with shallow water type models of reduced complexity. Indeed,
for vertically averaged models such as the Saint-Venant system [7], efficient and robust numerical techniques
(relaxation schemes [10], kinetic schemes [24], . . . ) are available and avoid to deal with moving meshes.

Non-linear shallow water equations model the dynamics of a shallow, rotating layer of homogeneous incom-
pressible fluid and are typically used to describe vertically averaged flows in two or three dimensional domains,
in terms of horizontal velocity and depth variation, see Figure 1.
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Figure 1. Averaged models derived from Navier-Stokes equations.

The classical Saint-Venant system [7] with viscosity and friction [15,16,18,20] is well suited for the modeling
of dam breaks or hydraulic jumps. The extended version of the Saint-Venant system proposed by Bristeau
and Sainte-Marie [11] dropping the hydrostatic assumption is well adapted for the modeling of gravity waves
propagation.

Considering flows with large friction coefficients, with significant water depth or with important wind effects,
the horizontal velocity can hardly be approximated – as in the Saint-Venant system – by a vertically constant
velocity [26]. To drop this limitation a multilayer Saint-Venant model is often used where each layer is described
by its own height, its own velocity and is advected by the flow (see [1,4,6] and the references therein). This
advection property induces that there is no mass exchanges between neighboring layers and makes a close
relation to models for two non-miscible fluids (see [9,12,13] for instance). In [1], introducing a vertical partition
of water height, a multilayer strategy was formally derived from the 2d Navier-Stokes system with hydrostatic
hypothesis and it is extended to 3d computations in [6].

Here, we derive another and simpler multilayer model where we prescribe the vertical discretization of the
layers taking into account the (unknown) total height of water. Using a Galerkin approximation in Lagrangian
formulation, we obtain a system where the only additional unknowns are the layers velocities. This leads to a
global continuity equation and allows mass exchanges between layers.

The objective of the paper is to present the derivation of this new multilayer model and to exhibit its
main properties (hyperbolicity, energy equality, . . .). Some simulations performed with a kinetic scheme [3] are
presented at the end of the paper where we demonstrate the accuracy and robustness of the model in-between
the Navier-Stokes and Saint-Venant systems.

The paper is organized as follows. In Section 2, we first present, in a simplified case, the formulation of
the new multilayer Saint-Venant system starting from the hydrostatic Euler equations. In Section 3, we recall
the Navier-Stokes system with a free moving boundary and its closure, and the shallow water system. We also
introduce the multilayer formulation in the context of the hydrostatic assumption. In Section 4 we examine
the main properties of the multilayer system and present a kinetic interpretation of the proposed model. This
kinetic formulation leads to a numerical scheme detailed in Section 5 where some numerical validations are also
shown.

2. A simplified case
Before deriving the complete version of the multilayer system, we illustrate the approach in a simple situation.

Moreover this case emphasizes the main differences with the multilayer system proposed by Audusse [1].
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Figure 2. Notations for the multilayer approach.

We depart from the free surface hydrostatic Euler system

∂u

∂x
+

∂w

∂z
= 0, (2.1)

∂u

∂t
+

∂u2

∂x
+

∂uw

∂z
+

∂p

∂x
= 0, (2.2)

∂p

∂z
= −g, (2.3)

for
t > t0, x ∈ R, zb(x) ≤ z ≤ η(x, t),

where η(x, t) represents the free surface elevation, u = (u, w)T the velocity. The water height is H = η− zb, see
Figure 2.

We add the two classical kinematic boundary conditions. At the free surface, we prescribe

∂η

∂t
+ us

∂η

∂x
− ws = 0, (2.4)

where the subscript s denotes the value of the considered quantity at the free surface. At the bottom, the
impermeability condition gives

ub
∂zb

∂x
− wb = 0, (2.5)

where the subscript b denotes the value of the considered quantity at the bottom.
We consider that the flow domain is divided in the vertical direction into N layers of thickness hα with N +1

interfaces zα+1/2(x, t), α = 0, . . . , N (see Fig. 2) so that

H =
N∑

α=1

hα, (2.6)

and

zα+ 1
2
(x, t) = zb(x) +

α∑
j=1

hj(x, t). (2.7)
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We consider the average velocities uα, α = 1, . . . , N defined by

uα(x, t) =
1
hα

∫ zα+1/2

zα−1/2

u(x, z, t)dz, (2.8)

we also denote 〈
u2
〉

α
(x, t) =

1
hα

∫ zα+1/2

zα−1/2

u2(x, z, t)dz, (2.9)

and
uα+1/2 = u(x, zα+1/2, t), (2.10)

the value of the velocity at the interface zα+1/2.

Proposition 2.1. With these notations, an integration of (2.1)–(2.3) over the layers [zα−1/2, zα+1/2],
α = 1, . . . , N leads to the following system of balance laws

∂hα

∂t
+

∂hαuα

∂x
= Gα+1/2 − Gα−1/2, (2.11)

∂hαuα

∂t
+

∂

∂x

(
hα

〈
u2
〉

α

)
+ ghα

∂H

∂x
= −ghα

∂zb

∂x
+ uα+1/2Gα+1/2 − uα−1/2Gα−1/2. (2.12)

The expression of the exchange terms Gα+1/2 is given in the following.

Proof. The proof relies on simple calculus based on the Leibniz rule. Using the incompressibility condition (2.1)
integrated over the interval [zα−1/2, zα+1/2], we deduce the mass equation (2.11) where we exhibit the kinematic
of the interface on the right hand side

Gα+1/2 =
∂zα+1/2

∂t
+ uα+1/2

∂zα+1/2

∂x
− w(x, zα+1/2, t), α = 0, . . . , N. (2.13)

The relation (2.13) gives the mass flux leaving/entering the layer α through the interface zα+1/2.
Then we consider the velocity equation (2.2). We first observe that from the hydrostatic assumption (2.3)

one can compute the pressure as a function of the water height :

p(x, z, t) = g(η(x, t) − z).

Now we integrate equation (2.2) over the interval [zα−1/2, zα+1/2] and we obtain the relation

∂hαuα

∂t
+

∂

∂x
(hα

〈
u2
〉

α
) + ghα

∂η

∂x
= uα+1/2Gα+1/2 − uα−1/2Gα−1/2, (2.14)

and with the definition of H , this is equivalent to (2.12). Then the kinematic boundary conditions (2.4) and
(2.5) can be written

G1/2 = 0, GN+1/2 = 0. (2.15)

These equations just express that there is no loss/supply of mass through the bottom and the free surface.
Notice also that one can compute Gα+1/2, just adding up the equations (2.11) for j ≤ α and using the first

equality of (2.15)

Gα+1/2 =
∂

∂t

α∑
j=1

hj +
∂

∂x

α∑
j=1

hjuj, α = 1, . . . , N. (2.16)
�
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The standard multilayer Saint-Venant system [1] is obtained by prescribing

Gα+1/2 ≡ 0. (2.17)

This choice is clearly natural for inmiscible fluids but is not justified if the multilayer system is seen as a
numerical approximation of the hydrostatic Euler equations. Indeed there is no reason to prevent the water
exchanges between connected layers. Moreover it is exhibited in [1] that this choice may lead to the development
of instabilities at the interfaces.

Here we drop this assumption and we only keep the two physical kinematic boundary conditions (2.15).
The equation (2.11) is then no more meaningful since the quantity ∂hα

∂t , appears on both side of the equality.
Nevertheless the sum of the equations (2.11) for all the layers is still relevant and the boundary condition (2.15)
leads to a global continuity equation for the total water height H

∂H

∂t
+

∂

∂x

N∑
α=1

hαuα = 0, (2.18)

and each layer depth hα is then deduced from the total water height by the relation

hα = lαH, (2.19)

with lα, α = 1, . . . , N a given number satisfying

lα ≥ 0,

N∑
α=1

lα = 1. (2.20)

Thus the momentum equation (2.12) becomes

∂hαuα

∂t
+

∂

∂x

(
hα

〈
u2
〉

α
+

1
lα

gh2
α

2

)
= −ghα

∂zb

∂x
+ uα+1/2Gα+1/2 − uα−1/2Gα−1/2. (2.21)

Using (2.18), (2.19), the expression of Gα+1/2 given by (2.16) can also be written

Gα+1/2 =
α∑

j=1

(
∂hjuj

∂x
− lj

N∑
i=1

∂hiui

∂x

)
· (2.22)

Finally we have to define the quantities hα

〈
u2
〉

α
and uα+1/2 appearing in (2.12). As usual in the derivation

of such systems, we have considered hα

〈
u2
〉

α
≈ hαu2

α, this will be discussed in details in Section 3.5. The
velocities uα+1/2, α = 1, . . . , N − 1 are obtained using an upwinding

uα+1/2 =
{

uα if Gα+1/2 ≥ 0
uα+1 if Gα+1/2 < 0.

(2.23)

To illustrate the formulation of the new model, we compare it with the system proposed in [1] in the simple
case of a two-layer formulation. Neglecting the viscosity and friction, the formulation obtained by Audusse [1]
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corresponds to (2.11), (2.12) with (2.17), i.e.

∂h1

∂t
+

∂h1u1

∂x
= 0,

∂h2

∂t
+

∂h2u2

∂x
= 0, (2.24)

∂h1u1

∂t
+

∂h1u
2
1

∂x
+ gh1

∂(h1 + h2)
∂x

= −gh1
∂zb

∂x
, (2.25)

∂h2u2

∂t
+

∂h2u
2
2

∂x
+ gh2

∂(h1 + h2)
∂x

= −gh2
∂zb

∂x
, (2.26)

with h1 + h2 = H . The preceding formulation corresponds to a superposition of two single layer Saint-Venant
systems (see also [9,12,13] where a very similar model is considered in a bi-fluid framework).

With our approach (2.18), (2.21), the two-layer formulation reads

∂H

∂t
+

∂h1u1

∂x
+

∂h2u2

∂x
= 0, (2.27)

∂h1u1

∂t
+

∂h1u
2
1

∂x
+

g

2
∂Hh1

∂x
= −gh1

∂zb

∂x
+ u3/2

(
l
∂H

∂t
+ l

∂Hu1

∂x

)
, (2.28)

∂h2u2

∂t
+

∂h2u
2
2

∂x
+

g

2
∂Hh2

∂x
= −gh2

∂zb

∂x
− u3/2

(
l
∂H

∂t
+ l

∂Hu1

∂x

)
, (2.29)

where h1 = lH, h2 = (1 − l)H, (2.30)

with l ∈ (0, 1) prescribed. The velocity at the interface, denoted u3/2, is calculated using upwinding, following
the sign of the mass exchange between the layers. It is important to notice that, in the new formulation (2.27)–
(2.30), we obtain directly a left hand side term written in conservative form with the topography and the mass
exchange as source terms whereas the pressure term of (2.24)–(2.26) has to be modified [1] to get a conservative
form. Moreover we prove in Section 4 that the system (2.27)–(2.30) is hyperbolic, which is not the case for
system (2.24)–(2.26).

The difference between (2.27)–(2.30) and (2.24)–(2.26) mainly comes from the physical definition of the
layers. Audusse introduces a physical discretization where each layer has its own continuity equation. These
N continuity equations mean the layers are isolated each other, this situation corresponds to the case of N non
miscible fluids. In the formulation (2.27)–(2.30), the discretization corresponds to a semidiscretization in the
vertical direction – of P0 finite elements type – of the velocity u. In this case, the definition of the layers does
not correspond to a physical partition of the flow but is related to the quality of the desired approximation
over u. Thus we have only one continuity equation meaning the fluid can circulate from one layer to another.

3. Derivation of the viscous multilayer shallow water system

In this section we will apply to the Navier-Stokes equations the multilayer approach presented in the preceding
section.

3.1. The Navier-Stokes equations

Let us start with the incompressible Navier-Stokes system [19] restricted to two dimensions with gravity
in which the z axis represents the vertical direction. For simplicity, the viscosity will be kept constant and
isotropic throughout the paper (we refer the reader to [15] for a more general framework). Therefore we have



AN EXCHANGING MASS MULTILAYER SAINT-VENANT SYSTEM 175

the following general formulation:

∂u

∂x
+

∂w

∂z
= 0, (3.31)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

∂p

∂x
=

∂Σxx

∂x
+

∂Σxz

∂z
, (3.32)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

∂p

∂z
= −g +

∂Σzx

∂x
+

∂Σzz

∂z
, (3.33)

and we consider this system for

t > t0, x ∈ R, zb(x, t) ≤ z ≤ η(x, t).

We use the same notations as in the previous section. We now consider the bathimetry zb can vary with respect
to abscissa x and also with respect to time t. The chosen form of the viscosity tensor is symmetric

Σxx = 2ν
∂u

∂x
, Σxz = ν

(
∂u

∂z
+

∂w

∂x

)
,

Σzz = 2ν
∂w

∂z
, Σzx = ν

(
∂u

∂z
+

∂w

∂x

)
,

with ν the viscosity coefficient.

3.2. Boundary conditions

The system (3.31)–(3.33) is complete with boundary conditions. The outward and upward unit normals to
the free surface ns and to the bottom nb are given by

ns =
1√

1 +
(

∂η
∂x

)2
( − ∂η

∂x
1

)
, nb =

1√
1 +
(

∂zb

∂x

)2
( −∂zb

∂x
1

)
.

Let ΣT be the total stress tensor with

ΣT = −pId +
(

Σxx Σxz

Σzx Σzz

)
.

At the free surface we have the kinematic boundary condition (2.4). Considering the air viscosity is negligible,
the continuity of stresses at the free boundary imposes

ΣTns = −pans, (3.34)

where pa = pa(x, t) is a given function corresponding to the atmospheric pressure. Relation (3.34) is equivalent to

ns.ΣT ns = −pa, and ts.ΣTns = 0,

ts being orthogonal to ns.
Since we now consider the bottom can vary with respect to time t, the kinematic boundary condition reads

∂zb

∂t
+ ub

∂zb

∂x
− wb = 0, (3.35)
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where (x, t) �→ zb(x, t) is a given function. Notice that equation (3.35) reduces to a classical no-penetration
condition (2.5) when zb does not depend on time t. For the stresses at the bottom we consider a wall law under
the form

ΣTnb − (nb.ΣTnb)nb = κ(vb, H)vb, (3.36)
with vb = ub − (0, ∂zb

∂t )T the relative velocity between the water and the bottom. If κ(vb, H) is constant then
we recover a Navier friction condition as in [18]. Introducing kl laminar and kt turbulent friction coefficients,
we use the expression

κ(vb, H) = kl + ktH |vb|,
corresponding to the boundary condition used in [20]. Another form of κ(vb, H) is used in [10] and for other
wall laws, the reader can also refer to [21]. Due to thermomechanical considerations, in the sequel we suppose
κ(vb, H) ≥ 0 and κ(vb, H) is often simply denoted by κ.

Let tb satisfying tb.nb = 0 then when multiplied by tb and nb, equation (3.36) leads to

tb.ΣTnb = κvb.tb, and vb.nb = 0.

3.3. The rescaled system

The physical system is rescaled using the quantities:
• h and λ, two characteristic dimensions along the z and x axis respectively;
• as the typical wave amplitude, ab the typical bathimetry variation;
• C =

√
gh the typical horizontal wave speed.

Classically for the derivation of the Saint-Venant system, we introduce the small parameter

ε =
h

λ
·

When considering long waves propagation, another important parameter needs to be considered, namely

δ =
as

h
,

and we consider for the bathimetry ab

h = O(δ). Notice that ε is related to a priori informations only associated
to geometrical features whereas as and accordingly δ deal with the state variables of the problem.

Depending on the application, δ can be considered or not as a small parameter. For finite amplitude wave
theory and assuming zb(x, t) = z0

b , one considers ε 
 1, δ = O(1) whereas the Boussinesq waves theory requires

δ 
 1, ε 
 1 and Ur = O(1)

where Ur is the Ursell number defined by Ur = δ
ε2 , see [28]. All along this work, we consider ε 
 1 whereas,

even if the parameter δ is introduced in the rescaling, the assumption δ 
 1 is not considered except when
explicitly mentioned.

As for the Saint-Venant system [18,20], we introduce some characteristic quantities: T = λ/C for the time,
W = as/T = εδC for the vertical velocity, U = W/ε = δC, for the horizontal velocity, P = C2 for the pressure.
This leads to the following dimensionless quantities

x̃ =
x

λ
, z̃ =

z

h
, η̃ =

η

as
, t̃ =

t

T
,

p̃ =
p

P
, ũ =

u

U
, and w̃ =

w

W
·

Notice that the definition of the characteristic velocities implies δ = U
C so δ also corresponds to the Froude

number. When δ = O(1) we have U ≈ C and we recover the classical rescaling used for the Saint-Venant
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system. For the bathimetry zb we write zb(x, t) = Zb(x) + b(t) and we introduce z̃b = Zb/h and b̃ = b/ab. This
leads to

∂zb

∂t
= εδC

∂b̃

∂t̃
= W

∂b̃

∂t̃
, and

∂zb

∂x
= ε

∂z̃b

∂x̃
·

The different rescaling applied to the time and space derivatives of zb means that a classical shallow water
assumption is made concerning the space variations of the bottom profile whereas we assume the time variations
of zb lie in the framework of the Boussinesq assumption and are consistent with the rescaling applied to the
velocity w.

We also introduce ν̃ = ν
λC and we set κ̃ = κ

C . Notice that the definitions for the dimensionless quantities are
consistent with the one used for the Boussinesq system [23,29]. Notice also that the rescaling used by Nwogu [22]
differs from the preceding one since Nwogu uses w̃ = ε2

W w.
As in [18,20], we suppose we are in the following asymptotic regime

ν̃ = εν0, and κ̃ = εκ0,

with κ0 = κl,0 + εκt,0(ṽb, H̃), κl,0 being constant.
This non-dimensionalization of the Navier-Stokes system (3.31)–(3.33) leads to

∂ũ

∂x̃
+

∂w̃

∂z̃
= 0, (3.37)

εδ
∂ũ

∂t̃
+ εδ2 ∂ũ2

∂x̃
+ εδ2 ∂ũw̃

∂z̃
+ ε

∂p̃

∂x̃
= ε2δ

∂

∂x̃

(
2ν0

∂ũ

∂x̃

)
+

∂

∂z̃

(
δν0

∂ũ

∂z̃
+ ε2δν0

∂w̃

∂x̃

)
, (3.38)

ε2δ

(
∂w̃

∂t̃
+ δ

∂ũw̃

∂x̃
+ δ

∂w̃2

∂z̃

)
+

∂p̃

∂z̃
= −1 +

∂

∂x̃

(
εδν0

∂ũ

∂z̃
+ ν0ε

3δ
∂w̃

∂x̃

)
+ εδ

∂

∂z̃

(
2ν0

∂w̃

∂z̃

)
, (3.39)

where we use the divergence free condition to write velocity equations (3.38) and (3.39) in a conservative form.
The associated boundary conditions (2.4), (3.34)–(3.36) become

∂η̃

∂t̃
+ δũs

∂η̃

∂x̃
− w̃s = 0, (3.40)

2εδν0
∂w̃

∂z̃

∣∣∣∣
s

− p̃s − εδ2ν0
∂η̃

∂x̃

(
∂ũ

∂z̃

∣∣∣∣
s

+ ε2 ∂w̃

∂x̃

∣∣∣∣
s

)
= −δp̃a, (3.41)

δν0

(
∂ũ

∂z̃

∣∣∣∣
s

+ ε2 ∂w̃

∂x̃

∣∣∣∣
s

)
− εδ

∂η̃

∂x̃

(
2εδν0

∂ũ

∂x̃

∣∣∣∣
s

− p̃s

)
= εδ2 ∂η̃

∂x̃
p̃a, (3.42)

∂b̃

∂t̃
+ ũb

∂z̃b

∂x̃
− w̃b = 0, (3.43)

δν0

(
ε2 ∂w̃

∂x̃

∣∣∣∣
b

+
∂ũ

∂z̃

∣∣∣∣
b

)
− ε

∂z̃b

∂x̃

(
2εδν0

∂ũ

∂x̃

∣∣∣∣
b

− pb

)
+ ε

∂z̃b

∂x̃

(
2εδν0

∂w̃

∂z̃

∣∣∣∣
b

− pb

− εν0
∂z̃b

∂x̃

(
δ

∂ũ

∂z̃

∣∣∣∣
b

+ ε2δ
∂w̃

∂x̃

∣∣∣∣
b

))
= εδκ0

√
1 + ε2

(
∂z̃b

∂x̃

)2
(

ũb + ε2 ∂z̃b

∂x̃

(
w̃b − ∂b̃

∂t̃

))
. (3.44)

For the sake of clarity, in the sequel we drop the symbol ˜ and we denote ∂b
∂t = ∂zb

∂t .

3.4. The shallow water system

The derivation of multilayer approximation is somehow technical. In order to better explain the analysis we
recall the monolayer case following the asymptotic expansion in [18].
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In the following the two sets of equations (3.37)–(3.39) and (3.40)–(3.44) are approximated to retain only
the high order terms.

Due to the applied rescaling some terms of the viscosity tensor e.g.

ε3δ
∂

∂x

(
ν0

∂w

∂x

)
are very small and could be neglected. But, as mentioned in [1], Remarks 1 and 2, the approximation of
the viscous terms has to preserve the dissipation energy that is an essential property of the Navier-Stokes and
averaged Navier-Stokes equations. Since we privilege this stability requirement and in order to keep a symmetric
form of the viscosity tensor, we consider in the sequel a modified version of (3.37)–(3.39) under the form

∂u

∂x
+

∂w

∂z
= 0, (3.45)

εδ
∂u

∂t
+ εδ2 ∂u2

∂x
+ εδ2 ∂uw

∂z
+ ε

∂p

∂x
= ε2δ

∂

∂x

(
2ν0

∂u

∂x

)
+

∂

∂z

(
δν0

∂u

∂z

)
, (3.46)

ε2δ

(
∂w

∂t
+ δ

∂uw

∂x
+ δ

∂w2

∂z

)
+

∂p

∂z
= −1 +

∂

∂x

(
εδν0

∂u

∂z

)
+

∂

∂z

(
2εδν0

∂w

∂z

)
, (3.47)

corresponding to a viscosity tensor of the form

Σxx = 2ν
∂u

∂x
, Σxz = Σzx = ν

∂u

∂z
, Σzz = 2ν

∂w

∂z
·

This means the terms in ε2∂xw have been neglected in (3.37)–(3.39) and in (3.40)–(3.44). For details about the
adopted form of the viscosity tensor see ([11], Rem. 2) and ([1], Lem. 2.1).

In the same way, retaining only the high order terms, the boundary conditions (3.40)–(3.44) become

∂η

∂t
+ δus

∂η

∂x
− ws = 0, (3.48)

2εδν0
∂w

∂z

∣∣∣∣
s

− ps − εδ2ν0
∂η

∂x

∂u

∂z

∣∣∣∣
s

= −δpa, (3.49)

δν0
∂u

∂z

∣∣∣∣
s

− εδ
∂η

∂x

(
2εδν0

∂u

∂x

∣∣∣∣
s

− ps

)
= εδ2 ∂η

∂x
pa, (3.50)

∂zb

∂t
+ ub

∂zb

∂x
− wb = 0, (3.51)

δν0
∂u

∂z

∣∣∣∣
b

− ε
∂zb

∂x

(
2εδν0

∂u

∂x

∣∣∣∣
b

− pb

)
+ ε

∂zb

∂x

(
2εδν0

∂w

∂z

∣∣∣∣
b

− pb − εδν0
∂zb

∂x

∂u

∂z

∣∣∣∣
b

)

= εδκ0

(
1 + ε2

(
∂zb

∂x

)2
)3/2

ub. (3.52)

Now we will exhibit the hydrostatic and non hydrostatic parts of the pressure. An integration of (3.47) from z
to δη gives

ε2δ

∫ δη

z

(
∂w

∂t
+ δ

∂(uw)
∂x

)
dz + ε2δ2(w2

s − w2) + ps − p

= −(δη − z) + εδ

∫ δη

z

∂

∂x

(
ν0

∂u

∂z

)
dz − 2εδν0

∂w

∂z
+ 2εδν0

∂w

∂z

∣∣∣∣
s

· (3.53)
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From the equations (3.41) and (3.42) it comes

∂u

∂z

∣∣∣∣
s

= O(ε2), (3.54)

and the boundary condition (3.41) gives

ps = δpa + 2εδ
∂w

∂z

∣∣∣∣
s

+ O(ε3δ2). (3.55)

The previous relation and the kinematic boundary condition (3.40) allow us to rewrite (3.53) under the form

ε2δ

(
∂

∂t

∫ δη

z

w dz + δ
∂

∂x

∫ δη

z

(uw) dz

)
− ε2δ2w2 + δpa − p

= −(δη − z) + εδ

∫ δη

z

∂

∂x

(
ν0

∂u

∂z

)
dz − 2εδν0

∂w

∂z
+ O(ε3δ).

Classically we have
∂us

∂x
=

∂u

∂x

∣∣∣∣
s

+ δ
∂η

∂x

∂u

∂z

∣∣∣∣
s

=
∂u

∂x

∣∣∣∣
s

+ O(ε2δ), (3.56)

and using relations (3.45), (3.56) and the Leibniz rule we have

εδ

∫ δη

z

∂

∂x

(
ν0

∂u

∂z

)
dz − 2εδν0

∂w

∂z
= εδν0

∂u

∂x
+ εδν0

∂u

∂x

∣∣∣∣
s

+ O(ε3δ).

This leads to the expression for the pressure p

p = ph + pnh + O(ε3δ), (3.57)

where the viscous and hydrostatic part ph is given by

ph = δpa + (δη − z) − εδν0
∂u

∂x
− εδν0

∂u

∂x

∣∣∣∣
s

,

and the non-hydrostatic part pnh is

pnh = ε2δ

(
∂

∂t

∫ δη

z

w dz + δ
∂

∂x

∫ δη

z

(uw) dz

)
− ε2δ2w2.

The derivation and analysis of a classical Saint-Venant type system taking into account the non-hydrostatic
part of the pressure has already been carried out by the authors [11]. The derivation of the multilayer system
in this general framework is in progress. It will be presented in a forthcoming paper.

In the sequel, we restrict to the situation pnh = 0. Due to this hydrostatic assumption, we have

p = ph + O(ε2δ), (3.58)

and we retain for ph the expression

ph = δpa + (δη − z) − 2εδν0
∂u

∂x
· (3.59)
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Then using (3.42), (3.44) and (3.55) one obtains

∂u

∂z

∣∣∣∣
s

= O(ε2),
∂u

∂z

∣∣∣∣
b

= O(ε). (3.60)

From (3.58), (3.59) we can write
p − δpa = δη − z + O(εδ), (3.61)

leading to
∂p

∂x
= O(δ).

The preceding relation inserted in (3.46) leads to

ν0
∂2u

∂z2
= O(ε), (3.62)

and equations (3.60) and (3.62) mean that

u(x, z, t) = u(x, 0, t) + O(ε), (3.63)

i.e. we recognize the so-called “motion by slices” of the usual Saint-Venant system. If we introduce the averaged
quantity

ū =
1

δη − zb

∫ δη

zb

u dz,

it is well known [11,16,18,20] that the shallow water system (3.45), (3.46) with an hydrostatic pressure (3.58),
(3.59) is approximated in O(ε2δ) by the following Saint-Venant system written with the variables with dimension

∂H

∂t
+

∂Hū

∂x
= 0, (3.64)

∂Hū

∂t
+

∂Hū2

∂x
+

g

2
∂H2

∂x
= −H

∂pa

∂x
− gH

∂zb

∂x
+

∂

∂x

(
4νH

∂ū

∂x

)
− κ(v̄, H)

1 + κ(v̄,H)
3ν H

ū (3.65)

with H = η − zb.

3.5. The viscous multilayer shallow water system

We again consider the shallow water system (3.45), (3.46) with an hydrostatic pressure (3.58), (3.59). Here
another approximation is introduced concerning the velocity u, it is no more assumed constant along the vertical
but is discretized in the z direction using piecewise constant functions, see Figure 2. As introduced in Section 2
the interval [zb, δη] is divided into N layers of thickness hα and we use the definitions (2.19), (2.20). We write

umc(x, z, {zα}, t) =
N∑

α=1

1[zα−1/2,zα+1/2](z)uα(x, t) (3.66)

with the velocities uα, α ∈ [1, . . . , N ] defined by (2.8).
Notice that from (2.7) we have z1/2 = zb = O(1) and zN+1/2 = δη = O(δ). The difference of magnitude

between z1/2 and zN+1/2 makes the assumption δ 
 1 difficult to integrate in the definition of the {zα+1/2}.
Now we try to quantify the error between u and its piecewise approximation umc. First we notice that in

absence of friction at the bottom and due to the shallow water assumption, the relations (3.60) become

∂u

∂z

∣∣∣∣
s

=
∂u

∂z

∣∣∣∣
b

= O(ε2). (3.67)
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This means we can consider that except for the bottom layer, each layer inherits the approximation (3.67) i.e.

∂u

∂z
= O(ε2) for z ≥ z3/2,

and therefore for all α > 1
u(x, z, t) − uα(x, t) = O(ε2), (3.68)

or equivalently
u(x, z, t) − umc(x, z, {zα}, t) = O(ε2), for z ≥ z3/2.

In the bottom layer we only have
u(x, z, t) − u1(x, t) = O(ε),

but as in [11,18], it can be proved that we have an approximation of the velocity through a parabolic correction

u =
(

1 +
εκ0

ν0

(
z − zb − (z − zb)2

2H
− H

3

))
u1 + O(ε2), (3.69)

for z ∈ [z1/2, z3/2]. Using the discretization (2.7), (2.8) and (3.66) we claim

Proposition 3.1. The multilayer formulation of the Saint-Venant system defined by

∂H

∂t
+

N∑
α=1

∂hαuα

∂x
= 0, (3.70)

∂h1u1

∂t
+

∂h1u
2
1

∂x
+

g

2l1

∂h2
1

∂x
= −h1

∂pa

∂x
− gh1

∂zb

∂x
+ u3/2G3/2 +

∂

∂x

(
4νh1

∂u1

∂x

)
− 4ν

∂z3/2

∂x

∂u3/2

∂x
+ 2ν

u2 − u1

h2 + h1
− κ(v̄, H)u1, (3.71)

∂hαuα

∂t
+

∂hαu2
α

∂x
+

g

2lα

∂h2
α

∂x
= −hα

∂pa

∂x
− ghα

∂zb

∂x
+ uα+1/2Gα+1/2 − uα−1/2Gα−1/2

+
∂

∂x

(
4νhα

∂uα

∂x

)
− 4ν

[
∂zj

∂x

∂uj

∂x

]j=α+1/2

j=α−1/2

+ 2ν
uα+1 − uα

hα+1 + hα
− 2ν

uα − uα−1

hα + hα−1
, (3.72)

for α ∈ {2, . . . , N − 1}

∂hNuN

∂t
+

∂hNu2
N

∂x
+

g

2lN

∂h2
N

∂x
= −hN

∂pa

∂x
− ghN

∂zb

∂x
− uN−1/2GN−1/2

+
∂

∂x

(
4νhN

∂uN

∂x

)
+ 4ν

∂zN−1/2

∂x

∂uN−1/2

∂x
− 2ν

uN − uN−1

hN + hN−1
, (3.73)

with hα = lαH(x, t) and Gα+1/2 given by (2.16), results from a formal asymptotic approximation in O(ε2δ)
coupled with a vertical discretization of the Navier-Stokes equations (3.37)–(3.39) with hydrostatic pressure.

Proof. The integration of the divergence equation (3.45) on each layer has been already performed in the
proof of Proposition 2.1. We recall that the deduced layer mass equations (2.11) are not meaningful if no
hypothesis is made concerning the mass exchange term Gα+1/2 defined by (2.16). We thus consider a global
mass equation (3.70) by adding them up. We can also directly integrate the divergence equation from bottom
to free surface in order to obtain equation (3.70).
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We now consider the horizontal velocity equation (3.46) integrated over the interval [zα−1/2, zα+1/2]. Using
for each layer an approximation similar to (3.68), (3.69), we prove that

1
hα

∫ zα+1/2

zα−1/2

u2(x, z, t)dz = u2
α + O(ε2).

In the context of the hydrostatic approximation, we assume that the pressure satisfies (3.58), (3.59). The
treatment of the inviscid part of the pressure has already been presented in the proof of Proposition 2.1 where
we have written for the gravitational part of the pressure

∫ zα+1/2

zα−1/2

∂

∂x
(δη − z) dz =

1
2lα

∂

∂x
h2

α + hα
∂zb

∂x
· (3.74)

Notice that it is also possible to write

∫ zα+1/2

zα−1/2

∂

∂x
(δη − z) dz =

1
2

∂

∂x

⎡⎣hα

⎛⎝2
N∑

j=α+1

hj + hα

⎞⎠⎤⎦− ∂zα+1/2

∂x

N∑
j=α+1

hj +
∂zα−1/2

∂x

N∑
j=α

hj . (3.75)

The expressions (3.74) and (3.75) lead to the same property for the complete model even if the hyperbolic part
is modified. The second formulation seems more adapted to the physical description “by layers” of the system
but leads to complementary source terms whose discretization is subtle. We will use and analyse (3.75) in a
forthcoming paper. In the following we use (3.74).

The integration of the viscous part of the pressure leads to

∫ zα+1/2

zα−1/2

∂

∂x

(
2ν

∂u

∂x

)
=

∂

∂x

(
2νhα

∂uα

∂x

)
+ 2ν

[
∂zj

∂x

∂uj

∂x

]j=α+1/2

j=α−1/2

+ O(ε2δ).

It remains to consider the viscous terms on the right hand side of (3.46). The first one is similar to the viscous
part of the pressure term. For the second one, using finite differences along the vertical, we write∫ zα+1/2

zα−1/2

∂

∂z

(
ν0

∂u

∂z

)
dz = ν0

∂u

∂z

∣∣∣∣
zα+1/2

− ν0
∂u

∂z

∣∣∣∣
zα−1/2

,

≈ 2ν
uα+1 − uα

hα+1 + hα
− 2ν

uα − uα−1

hα + hα−1
,

and relation (3.72) follows. Notice that equations (3.71) and (3.73) are concerned with the evolution of the
discharge in the lowest and uppest layers, respectively. The difference between equations (3.71) and (3.73) and
the general equation (3.72) comes from the particular form of the viscous effect at the bottom and at the free
surface.

Finally we drop the O(ε2δ) terms and recovering the variables with dimension, we obtain the system (3.70)–
(3.73). �

4. Properties of the multilayer system

In this paragraph we examine some properties of the model depicted in Proposition 3.1. We study its
hyperbolicity and we exhibit an energy inequality and a kinetic interpretation of the system.
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4.1. Hyperbolicity

4.1.1. Two layers model

For the simplicity of the discussion we restrict in this subsection to the two-layer version of the multilayer
model.

Let us first say some words about the multilayer system (2.24)–(2.26) introduced by Audusse [1]. This non-
miscible multilayer system was proved to be non-hyperbolic. In the general case the system exhibits complex
eigenvalues. In the very simple case u1 = u2 = u the eigenvalues of the hyperbolic part was shown to be equal to
the classical barotropic eigenvalues of the monolayer shallow water system u+

√
gH , u−√

gH plus a baroclinic
eigenvalue u that is concerned with the interface waves. Nevertheless the system is not hyperbolic since u is
a double eigenvalue associated to a one-dimensional eigenspace. This lack of hyperbolicity may lead to the
development of instabilities at the interface [1,12]. In [1] a technical trick is proposed to cure the problem. Here
we can prove the well-posedness of the system.

Proposition 4.1. The two-layer version of the multilayer Saint-Venant system (3.70)–(3.73) is strictly hyper-
bolic when the total water height is strictly positive.

Proof. The two-layer version of the multilayer system depicted in Proposition 3.1 stands – we denote u = u3/2

with u = u1 or u = u2 (see 2.23) –

∂H

∂t
+ l

∂Hu1

∂x
+ (1 − l)

∂Hu2

∂x
= 0,

∂Hu1

∂t
+

∂Hu2
1

∂x
+

g

2
∂H2

∂x
= −gH

∂zb

∂x
+ u

(
∂H

∂t
+

∂Hu1

∂x

)
− H

∂pa

∂x
+

2ν

lH
(u2 − u1) − κ̃(v̄, H)u1,

∂Hu2

∂t
+

∂Hu2
2

∂x
+

g

2
∂H2

∂x
= −gH

∂zb

∂x
+ u

(
∂H

∂t
+

∂Hu2

∂x

)
− 2ν

(1 − l)H
(u2 − u1) − H

∂pa

∂x
·

The previous formulation can be written under the quasi-linear form

M(X)
∂X

∂t
+ A(X)

∂X

∂x
= S(X),

with

X =

⎛⎝ H
q1

q2

⎞⎠ , M(X) =

⎛⎝ 1 0 0
−u 1 0
−u 0 1

⎞⎠ , A(X) =

⎛⎝ 0 l (1 − l)
gH − u2

1 2u1 − u 0
gH − u2

2 0 2u2 − u

⎞⎠ ,

S(X) =

⎛⎜⎜⎜⎜⎜⎝
0

−gH
∂zb

∂x
+

2ν

lH
(u2 − u1) − κ̃(v̄, H)u1 − H

∂pa

∂x

−gH
∂zb

∂x
− 2ν

(1 − l)H
(u2 − u1) − H

∂pa

∂x

⎞⎟⎟⎟⎟⎟⎠ ,

and qi = Hui, i = {1, 2}.
The three eigenvalues of M−1(X)A(X) are the roots of D(x) = det(A − xM) = 0 with

D(x) = −xΠ2
i=1(2ui − u − x) − l(2u2 − u − x)(gH − u2

1 + ux) − (1 − l)(2u1 − u − x)(gH − u2
2 + ux).

Let us fix H , u1 and u2 in R and l ∈ (0, 1). Let us suppose u1 < u2 with u2 = u1 + γ2. We recall that the value
of the interface velocity u is taken equal to u1 or u2 following the direction of the exchange of mass between
the two layers.
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Let us first suppose that u = u1. Then we obviously have

D(u1) = −2gHlγ2 < 0, D(−∞) = +∞, D(+∞) = −∞,

and some computations lead to
D(max(u2 = u1 + γ2, u1 + 2lγ2)) > 0,

since D(u2) = (1− 2l)gHγ2 + lγ6 > 0 if l ≤ 1/2 and D(u1 +2lγ2) = 2l(1− l)(4l− 1)γ6 > 0 if l > 1/2. It follows
that D(x) has three real and simple eigenvalues.

Let us now suppose that u = u2. Then we have

D(u2) = 2gH(1 − l)γ2 > 0, D(−∞) = +∞, D(+∞) = −∞,

and some computations lead to

D(min(u1 = u2 − γ2, u2 − 2(1 − l)γ2)) < 0,

since D(u1) = (1−2l)gHγ2− (1− l)γ6 < 0 if l ≥ 1/2 and D(u2−2(1− l)γ2) = 2l(1− l)(4l−3)γ6 < 0 if l < 1/2.
Here also D(x) has three real and simple eigenvalues.

The case u2 < u1 is similar and we can conclude that the two-layer version of the multilayer system depicted
in Proposition 3.1 is strictly hyperbolic. Notice that when u1 = u2 = u, we find the same baroclinic and
barotropic eigenvalues u, u +

√
gH, u − √

gH as for the nonmiscible multilayer system [1], but they are all
simple eigenvalues in this case since we consider a system with only three equations. �

4.1.2. General case

In the case of N layers the matrices A(X) and M(X) can be written

AN+1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 l1 . . . . . . lN
gH − u2

1 2u1 ṽ1,2 . . . ṽ1,N

... v̄2,1
. . . . . .

...
...

...
. . . . . . ṽN−1,N

gH − u2
N v̄N,1 . . . v̄N,N−1 2uN

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with v̄ij = ui−1/2 ∗ lj/li and ṽij = ui+1/2 ∗ lj/li,

MN+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0

v1 1
. . .

...
... 0

. . . . . .
...

...
...

. . . 1 0
vN 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

with vi = ui−1/2 ∗
∑i−1

j=1 lj/li + ui+1/2 ∗
∑N

j=i+1 lj/li.
We have performed various numerical evaluations of the eigenelements of the matrix M−1

N+1AN+1 with nu-
merous choices of the parameters H , uα, uα+1/2 and lα. When the parameters correspond to physical values,
these tests have always shown that the matrix is diagonalizable on R. But when considering shear flows with
very large velocities e.g. |ui0 |  1, |uj0 |  1 and ui0uj0 < 0 for some i0 �= j0, complex eigenvalues can appear.
Such a behavior is natural since neglecting the viscous and friction effects and as demonstrated in Proposi-
tion 3.1, our multilayer system approximates the hydrostatic free surface Euler system that is not an hyperbolic
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conservation law. Notice also that the kinetic scheme instead of using discrete eigenvalues of the Jacobian ma-
trix, uses a continuum of eigenvalues and is able to deal with situations where some of the discrete eigenvalues
are complex.

In the simple case where all the layers have the same velocity u, the barotropic eigenvalues u +
√

gH and
u − √

gH are simple and the baroclinic eigenvalue u has a multiplicity of N − 1 but the matrix remains
diagonalizable on R and the problem is still well-posed.

4.2. Energy equality

The classical Saint-Venant system (3.64)–(3.65) admits an energy equality [1,11] under the form

∂Esv

∂t
+

∂

∂x

(
ū

(
Esv + g

H2

2

)
− 4νHū

∂ū

∂x

)
= H

∂pa

∂t
− 4νH

(
∂ū

∂x

)2

− κ(v̄, H)

1 + κ(v̄,H)H
3ν

ū2 + gH
∂zb

∂t
, (4.76)

with Esv = Hū2

2 + gH(η+zb)
2 + Hpa. Here we have the following result.

Proposition 4.2. For the multilayer Saint-Venant system (3.70)–(3.73), smooth solutions satisfy the energy
equality

∂

∂t

(
N∑

α=1

Emc
sv,α

)
+

∂

∂x

(
N∑

α=1

uα

(
Emc

sv,α +
g

2
hαH − 4νhα

∂uα

∂x

))

= −κ(v̄, H)u2
1 −

ν

hα

N−1∑
α=1

(uα+1/2 − uα−1/2)2 − 4ν

N∑
α=1

hα

(
∂uα

∂x

)2

+ H
∂pa

∂t
+ gH

∂zb

∂t
, (4.77)

with Emc
sv,α = hαu2

α

2 + ghα(η+zb)
2 + hαpa.

Proof. The proof relies on classical computations. Starting from (3.46) with u = umc, p = ph multiplying it
with umc and integrating over [zα−1/2, zα+1/2] with 1 < α < N we obtain

∂

∂t
Emc

sv,α +
∂

∂x

(
uα

(
Emc

sv,α +
g

2
hαH − 4νh

∂uα

∂x

))
= −
(

u2
α−1/2

2
+ pa

)
Gα−1/2 +

(
u2

α+1/2

2
+ pa

)
Gα+1/2

− ν0uα−1/2
∂umc

∂z

∣∣∣∣
zα−1/2

+ ν0uα+1/2
∂umc

∂z

∣∣∣∣
zα+1/2

+ ν0

∂zα−1/2

∂x
uα−1/2

∂umc

∂x

∣∣∣∣
zα−1/2

− ν0

∂zα+1/2

∂x
uα+1/2

∂umc

∂x

∣∣∣∣
zα+1/2

− ν

hα
(uα+1/2 − uα−1/2)2 − 4νhα

(
∂uα

∂x

)2

+ hα
∂pa

∂t
+ ghα

∂zb

∂t
, (4.78)

where we have considered for z ∈ [zα−1/2, zα+1/2]

∂u

∂z
=

1
hα

(
uα+1/2 − uα−1/2

)
.

An analogous calculation is valid for α = 1 and α = N . A sum from α = 1 to α = N of the equalities (4.78)
with the boundary conditions (3.48)–(3.52) completes the proof. �

4.3. Kinetic interpretation

For the simulation of a multilayer system several strategies are possible. Castro et al. [13] consider the full
system and build a specific solver for the two-layer case. Following the discrete multilayer scheme proposed by
Audusse [1] we prefer to exhibit a kinetic formulation of the system obtained in Proposition 3.1. Indeed kinetic
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schemes might be one of the best compromise between accuracy, stability and efficiency for the resolution of
Saint-Venant type equations, see [3,24]. We refer to the next section for the presentation of the numerical
scheme. Here we focus on the kinetic interpretation of the system.

The kinetic approach consists in using a description of the microscopic behavior of the system. In this
method, fictitious particles are introduced and the equations are considered at the microscopic scale, where no
discontinuities occur. The process to obtain the kinetic interpretation of the multilayer model is similar to the
one used in [3] for the monolayer shallow water system. For a given layer α, a distribution function Mα(x, t, ξ)
of fictitious particles with microscopic velocity ξ is introduced to obtain a linear microscopic kinetic equation
equivalent to the macroscopic model presented in Proposition 3.1.

Let us introduce a real function χ defined on R, compactly supported and which have the following properties⎧⎨⎩
χ(−w) = χ(w) ≥ 0∫

R

χ(w) dw =
∫

R

w2χ(w) dw = 1.
(4.79)

Now let us construct a density of particles Mα(x, t, ξ) defined by a Gibbs equilibrium: the microscopic density
of particles present at time t in the layer α, in the vicinity Δx of the abscissa x and with velocity ξ given by

Mα(x, t, ξ) = lα
H(x, t)

c
χ

(
ξ − uα(x, t)

c

)
, α = 1, . . . , N, (4.80)

with

c2 =
gH

2
·

Likewise, we define Nα+1/2(x, t, ξ) by

Nα+1/2(x, t, ξ) = Gα+1/2(x, t) δ
(
ξ − uα+1/2(x, t)

)
, α = 0, . . . , N, (4.81)

where δ denotes the Dirac distribution. The quantities Gα+1/2, 0 ≤ α ≤ N represent the mass exchanges
between layers α and α + 1, they are defined in (2.16) and satisfy the conditions (2.15), so N1/2 and NN+1/2

also satisfy
N1/2(x, t, ξ) = NN+1/2(x, t, ξ) = 0. (4.82)

We also introduce the densities M̃α(x, t, ξ) that will be used for the energy equations , they are defined by

M̃α(x, t, ξ) =
gH(x, t)hα(x, t)

4c
χ

(
ξ − uα(x, t)

c

)
·

Notice that the introduction of this second family of densities is not needed when we consider the two dimensional
shallow water system. Here they take into account some kind of transversal effect at the kinetic level that is
implicitly included into the macroscopic one dimensional shallow water system. We refer the reader to [3,25]
for more details.

With the previous definitions, dropping the viscous, and friction terms, we write a kinetic representation of
the multilayer Saint-Venant system described in Proposition 3.1 and we have the following proposition:

Proposition 4.3. The functions (H, umc) are strong solutions of the multilayer Saint-Venant
system (3.70)–(3.73) if and only if the set of equilibria {Mα(x, t, ξ)}N

α=1 is solution of the kinetic equations

∂Mα

∂t
+ ξ

∂Mα

∂x
− ∂

∂x
(pa + gzb)

∂Mα

∂ξ
− Nα+1/2(x, t, ξ) + Nα−1/2(x, t, ξ) = Qα(x, t, ξ), (4.83)

α = 1, . . . , N,
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with {Nα+1/2(x, t, ξ)}N
α=0 satisfying (4.81), (4.82). The set of equations (4.83) can also be written under the

form

Nα+1/2(x, t, ξ) =
α∑

i=1

(
∂Mi

∂t
+ ξ

∂Mi

∂x
− ∂

∂x

(
pa + zb

)∂Mi

∂ξ
− Qi

)
, α = 1, . . . , N. (4.84)

The quantities Qα(x, t, ξ) are “collision terms” equals to zero at the macroscopic level i.e. which satisfy for a.e.
values of (x, t) ∫

R

Qαdξ = 0,

∫
R

ξQαdξ = 0.

The solution of (4.83), (4.84) is an entropy solution if additionally

∂M̃α

∂t
+ ξ

∂M̃α

∂x
= Q̃α(x, t, ξ), α = 1, . . . , N, (4.85)

with ∫
R

(
ξ2

2
Qα + Q̃α

)
dξ ≤ 0.

Proof. As previously we denote X = (H, q1, . . . , qN )T the vector of unknowns with qα = lαHuα. We introduce
M = (M1, . . . , MN )T and an (N + 1) × N matrix K(ξ) defined by K1,j = 1, Ki+1,j = δi,j ξ with δi,j the
Kronecker symbol.

Using the definition (4.80) and the properties of the function χ, we have

lαH(x, t) =
∫

R

Mα(x, t, ξ)dξ, (4.86)

and

X(x, t) =
∫

R

K(ξ) M(x, t, ξ)dξ. (4.87)

The proof is obtained by a simple integration in ξ of the set of equations (4.83) against the matrix K(ξ). First,
an integration in ξ of (4.83) gives the continuity equation (2.11) i.e.

∂lαH

∂t
+

∂lαHuα

∂x
= Gα+1/2 − Gα−1/2,

and by summation we have (3.70). Actually from the definition (4.81) of Nα+1/2 we have∫
R

Nα+1/2(x, t, ξ)dξ = Gα+1/2(x, t),

and ∫
R

ξNα+1/2(x, t, ξ)dξ = uα+1/2Gα+1/2.

Likewise for the energy balance of the layer α we proceed an integration in ξ of (4.83) against ξ2/2. Since we
have ∫

R

(
ξ2

2
Mα + M̃α

)
dξ =

hα

2
u2

α +
g

2
hαH, (4.88)∫

R

ξ

(
ξ2

2
Mα + M̃α

)
dξ =

hα

2
u3

α + ghαHuα, (4.89)
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and for the source term∫
R

ξ2

2
∂

∂x
(pa + gzb)

∂Mα

∂ξ
dξ = − ∂

∂x
(pa + gzb)hαuα

= − ∂

∂x

(
(gzb + pa)hαuα

)
+ (gzb + pa)

∂hαuα

∂x

= − ∂

∂x

(
(gzb + pa)hαuα

)− (gzb + pa)
∂hα

∂t
− (gzb + pa)Gα+1/2 + (gzb + pa)Gα−1/2, (4.90)

we obtain the equality

∂

∂t

(
hα

2
u2

α +
g

2
hα(η + zb) + hαpa

)
+

∂

∂x

[
uα

(
hαu2

α +
g

2
hαH +

g

2
hα(η + zb) + hαpa

)]
+

u2
α−1/2

2
Gα−1/2 −

u2
α+1/2

2
Gα+1/2 − hα

∂pa

∂t
− ghα

∂zb

∂t
=
∫

R

(
ξ2

2
Qα + Q̃α

)
dξ. (4.91)

The previous relation corresponds to (4.78) where the viscous and friction terms are neglected. The sum of the
equations (4.91) gives the energy equality for the global system and that completes the proof. �

The formulation (4.83) reduces the nonlinear multilayer Saint-Venant system to a linear transport system
on nonlinear quantities {Mα}N

α=1, {Nα+1/2}N
α=0 for which it is easier to find a simple numerical scheme with

good theoretical properties. In the case of a single layer, for a detailed proof of the kinetic interpretation refer
to [3] and for the treatment of the source term at this microscopic level see [25]. Notice that the choice of the
function χ remains quite open at this stage since several functions satisfy the requested properties. Following
this choice the deduced kinetic scheme will have different properties.

5. Numerical results

In the applications discussed here, we assume pa = 0 and we neglect the horizontal viscosity. Then the N +1
equations of the multilayer system (3.70)–(3.73) can be written with the general form

∂H

∂t
+

N∑
α=1

∂(lαHuα)
∂x

= 0, (5.92)

∂(lαHuα)
∂t

+
∂

∂x

(
lαHu2

α +
g

2
lαH2

)
= −glαH

∂zb

∂x
+ uα+1/2Gα+1/2 − uα−1/2Gα−1/2

+
2να

lα+1 + lα

uα+1 − uα

H
− 2να−1

lα + lα−1

uα − uα−1

H
− κα(u, H)uα, α = 1, . . . , N, (5.93)

with

κα =
{

κ(u, H) if α = 1
0 if α �= 1 να =

⎧⎨⎩ 0 if α = 0
ν if α = 1, . . . , N − 1
0 if α = N.

The previous system is of the form:

∂X

∂t
+

∂F (X)
∂x

= Sb(X) + Se(X) + Sv(X) (5.94)

with F (X) the flux of the hyperbolic part, Sb(X) the topography source term, Se(X) the mass transfer source
term and Sv(X) the viscous and friction terms.
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To approximate the solution of the multilayer Saint-Venant system, we use a finite volume framework.
We assume that the computational domain is discretised by I nodes xi. We denote Ci the cell of length
Δxi = xi+1/2 − xi−1/2 with xi+1/2 = (xi + xi+1)/2. For the time discretization, we denote tn =

∑
k≤n Δtk

where the time steps Δtk will be precised later though a CFL condition. We denote Xn
i = (Hn

i , qn
1,i, . . . , q

n
N,i)

the approximate solution at time tn on the cell Ci with qn
α,i = lαHn

i un
α,i.

5.1. Time discretization

For the time discretization, we apply time splitting to equation (5.94) and we write

X̃n+1 − Xn

Δtn
+

∂F (Xn)
∂x

= Sb(Xn) + Se(Xn), (5.95)

Xn+1 − X̃n+1

Δtn
− Sv(Xn, Xn+1) = 0. (5.96)

Classically we first compute the hyperbolic part (5.95) of the multilayer system by an explicit scheme. This first
computation includes the topographic source term in order to preserve relevant equilibria [5] and also defines
the mass transfer terms. Concerning the viscous and friction terms (5.96) that are dissipative, we prefer a
semi-implicit scheme for reasons of stability.

5.2. Numerical scheme: explicit part

To perform the explicit step we deduce a finite volume kinetic scheme from the previous kinetic interpretation
of the multilayer system. Notice that even if the system is hyperbolic, the eigenvalues are unknown. Thus any
solver requiring the knowledge of the eigenvalues would face difficulties while but the kinetic scheme is easily
extended [4].

Starting from a piecewise constant approximation of the initial data, the general form of a finite volume
method is

X̃n+1
i − Xn

i + σn
i

[
Fn

i+1/2 − Fn
i−1/2

]
= ΔtnSbn

i + ΔtnSen
i , (5.97)

where σn
i = Δtn/Δxi is the ratio between space and time steps and the numerical flux Fn

i+1/2 is an approximation
of the exact flux estimated at point xi+1/2.

The topographic source term Sbn
i is not deduced from the kinetic interpretation (see [25]) but computed by

hydrostatic reconstruction, see Proposition 5.1. As in [3,6] the kinetic interpretation (4.83) is used to precise
the expression of the fluxes Fn

i+1/2 in (5.97). First, by analogy with (4.80) we define the discrete densities of
particles Mn

α,i by

Mn
α,i(ξ) = lα

Hn
i

cn
i

χ

(
ξ − un

α,i

cn
i

)
, with cn

i =

√
gHn

i

2
·

Then the equation (4.83) without the atmospheric pressure and topographic terms is discretised for each α by
applying a simple upwind scheme for the advection term

fn+1
α,i (ξ) = Mn

α,i(ξ) − ξσn
i

(
Mn

α,i+1/2(ξ) − Mn
α,i−1/2(ξ)

)
+ Δtn

(
N

n+1/2
α+1/2,i(ξ) − N

n+1/2
α−1/2,i(ξ)

)
, (5.98)

where

Mn
α,i+1/2 =

{
Mn

α,i if ξ ≥ 0
Mn

α,i+1 if ξ < 0

and the terms N
n+1/2
α+1/2,i will be defined in the following.

We define the vectors fn+1
i (ξ) = (fn+1

1,i (ξ), . . . , fn+1
N,i (ξ))T , Mn

i (ξ) = (Mn
1,i(ξ), . . . , M

n
N,i(ξ))

T . Each new
density function fn+1

α,i is not an equilibrium but thanks to the property of the right hand side of (4.83), by analogy
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with (4.86), (4.87) we can recover the macroscopic quantities at time tn+1. We write

lαHn+1
i =

∫
R

fn+1
i (ξ) dξ, (5.99)

and by a simple integration in ξ of (5.98) against K(ξ), we can precise the macroscopic formula (5.97) (without
the topographic term)

X̃n+1
i =

∫
R

K(ξ) fn+1
i (ξ) dξ. (5.100)

If we denote
Fn

i+1/2 = F (Xn
i , Xn

i+1) = F+(Xn
i ) + F−(Xn

i+1),
we define

F−(Xn
i ) =

∫
ξ∈R−

ξK(ξ) Mn
i (ξ) dξ, F+(Xn

i ) =
∫

ξ∈R+
ξK(ξ) Mn

i (ξ) dξ. (5.101)

More precisely the expression of F+(Xi) can be written

F+(Xi) =

⎛⎜⎜⎜⎝
F+

H (Xi)
F+

q1
(Xi)
...

F+
qN

(Xi)

⎞⎟⎟⎟⎠ , (5.102)

with

F+
H (Xi) =

N∑
α=1

F+
hα

(Xi) =
N∑

α=1

lαH

∫
w≥−uα,i

ci

(uα,i + wci) χ(w) dw,

F+
qα

(Xi) = lαH

∫
w≥−uα,i

ci

(uα,i + wci)2 χ(w) dw.

We denote also

Fhα,i = Fhα,i+1/2 − Fhα,i−1/2 = F+
hα

(Xi) + F−
hα

(Xi+1) −
(
F+

hα
(Xi−1) + F−

hα
(Xi)
)
. (5.103)

This kinetic method is interesting because it gives a very simple and natural way to propose a numerical
flux through the kinetic interpretation. If we can perform analytically the integration in (5.102), i.e. if the
probability function χ defined in (4.79) is chosen to be simple enough, it is also numerically powerful because
the kinetic level disappears and the scheme is written directly as a macroscopic scheme for which only very
simple computations are needed. In this paper we have used

χ(w) =
1

2
√

3
1|w|≤√

3(w).

Let us now precise the terms N
n+1/2
α+1/2,i and so the exchange terms Sen

i defined by

Sen
i =
∫

R

K(ξ)
(
N

n+1/2
α+1/2,i(ξ) − N

n+1/2
α−1/2,i(ξ)

)
dξ. (5.104)

From the conditions (4.82) we prescribe

N
n+1/2
1/2,i (ξ) = N

n+1/2
N+1/2,i(ξ) = 0. (5.105)
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So we recover Sen
H,i = 0 and equation (5.100) defines Hn+1

i . By summation of (5.98) we have

ΔtnN
n+1/2
α+1/2,i(ξ) =

α∑
j=1

(
fn+1

j,i (ξ) − Mn
j,i(ξ) + ξσn

i

(
Mn

j,i+1/2(ξ) − Mn
j,i−1/2(ξ)

))
, α = 1, . . . , N − 1, (5.106)

and we define
G

n+1/2
α+1/2,i =

∫
R

N
n+1/2
α+1/2,i(ξ) dξ, α = 0, . . . , N, (5.107)

so we can write

ΔtnG
n+1/2
α+1/2,i =

α∑
j=1

[
lj(Hn+1

i − Hn
i ) + σn

i (Fn
hj,i+1/2 − Fn

hj,i−1/2)
]
, α = 1, . . . , N. (5.108)

Then using the discrete mass conservation equation giving Hn+1
i , the terms G

n+1/2
α+1/2,i can be written under an

explicit form (see (2.22)) i.e. depending only of Xn
i

ΔxiG
n+1/2
α+1/2,i =

α∑
j=1

(
Fn

hj ,i − lj

N∑
p=1

Fn
hp,i

)
, (5.109)

we have to notice that this definition is compatible with the free surface condition of (5.105).
We define

N
n+1/2
α+1/2,i(ξ) = G

n+1/2
α+1/2,i δ

(
ξ − un

α+1/2,i

)
, (5.110)

with, according to (2.23)

un
α+1/2,i =

⎧⎨⎩ un
α+1,i if G

n+1/2
α+1/2,i ≥ 0,

un
α,i if G

n+1/2
α+1/2,i < 0.

Then the exchange term Sen
i in (5.104) is completely defined.

We have denoted the approximations in time of Nα+1/2 and Gα+1/2 with an upperscript n + 1/2 because
we have to define Hn+1

i at the macroscopic level to obtain the microscopic approximation of Nα+1/2,i which is
used for the computation of the momentum lαHn+1

i un+1
α,i .

The source term Sbn
i = (Sbn

H,i, Sbn
1,i, . . . , Sbn

N,i) is an approximation of the topographic source terms. For
stability purpose, see [5] we use the following discretization

Sbn
H,i = 0, Sbn

α,i = lα

(
g

2

(
Hn

i+1/2−
)2

− g

2

(
Hn

i−1/2+

)2
)

(5.111)

with

zb,i+1/2 = max{zb,i, zb,i+1},
Hn

i+1/2− = Hn
i + zb,i − zb,i+1/2,

Hn
i+1/2+ = Hn

i+1 + zb,i+1 − zb,i+1/2. (5.112)

And we have the following proposition.

Proposition 5.1. The discretization of the source terms given by (5.111), (5.112) preserves the steady states

{un
α,i = 0}N

α=1, Hn
i + zb,i = Cst. ∈ R, ∀i, ∀n,

given by a “lake at rest”.
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Proof. For the proof of this proposition, the readers can refer to [5]. �

The scheme explained in this paragraph allows to calculate X̃n+1 given by (5.95) and (5.97).

5.3. Numerical scheme: implicit part

Now we aim to calculate Xn+1 from (5.96). Neglecting the horizontal viscosity, the vertical viscosity source
term can be interpreted as a friction term between one layer and the two adjacent ones. As usual we treat this
friction term implicitly. This leads to solve a linear system.

The implicit step does not affect the discrete water height therefore

Hn+1
i = H̃n+1

i ,

and the computation of the new velocities {un+1
α,i }N

α=1 leads to solve a tridiagonal N × N linear system that
reads

T n,n+1
i Un+1

i = q̃n+1
i ,

with Un+1
i = (un+1

1,i , . . . , un+1
N,i )T , q̃n+1

i = (q̃n+1
1,i , . . . , q̃n+1

N,i )T and

T n,n+1
i (1, 1) = l1H

n+1
i +

2Δtn

Hn+1
i

(
ν1

l1 + l2

)
+ Δtnκ(Xn

i , Hn+1
i ),

T n,n+1
i (α, α) = lαHn+1

i +
2Δtn

Hn+1
i

(
να

lα + lα+1
+

να−1

lα + lα−1

)
, for α ∈ {2, . . . , N},

T n,n+1
i (α, α + 1) = − 2Δtn

Hn+1
i

(
να

lα + lα+1

)
, for α ∈ {1, . . . , N − 1},
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i (α − 1, α) = − 2Δtn
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i

(
να−1

lα + lα−1

)
, for α ∈ {2, . . . , N}.

For the friction at the bottom, several models can be used among which are Navier, Chezy and Strickler laws.

5.4. Stability of the scheme

We now establish the stability property of the kinetic scheme. Classically for the Saint-Venant system, a
CFL condition ensures the water height is non negative. This CFL condition means that the quantity of water
leaving a given cell during a time step Δtn is less than the actual water in the cell.

For the multilayer Saint-Venant system we have the same kind of requirement concerning the time step Δtn.
But due to the vertical discretization, the water can leave the cell Ci of the layer α either by the boundaries
xi±1/2 or by the interfaces zα±1/2, see Figure 3. This makes the CFL condition more restrictive and we have
the following proposition.

Proposition 5.2. Assume that the function χ has a compact support of length 2wM then under the CFL
condition

Δtn ≤ min
1≤α≤N

min
i∈I

lαHn
i Δxi

lαHn
i

(|un
α,i| + wMcn

i

)
+ Δxi

([
G

n+1/2
α+1/2,i

]
−

+
[
G

n+1/2
α−1/2,i

]
+

) (5.113)

the kinetic scheme (5.97), (5.111) and (5.102) keeps the water height positive i.e. Hn
i ≥ 0 if it is true initially.

Notice that this condition does not depend on ∂zb

∂x .

Proof. The proof has been adapted from those given in [2,25]. To prove the stability property of the scheme,
we come back to the kinetic interpretation and we proceed by induction. We assume that Hn

i ≥ 0, ∀i and we
prove that Hn+1

i ≥ 0, ∀i.
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Figure 3. Interpretation of the CFL condition for the classical Saint-Venant system (up) and
for the multilayer system (down).

From the definition of the functions Mα in (4.80) and the positivity of the function χ, we deduce

Mn
α,i ≥ 0, ∀i, for α = 1, . . . , N.

We now introduce the quantities

[ξ]+ = max(0, ξ), [ξ]− = max(0,−ξ),

and so we can write the upwind microscopic scheme (5.98)

fn+1
α,i = (1 − σn

i |ξ|) Mn
α,i + σn

i [ξ]+Mn
α,i−1 + σn

i [ξ]−Mn
α,i+1 + Δtn

(([
N

n+1/2
α+1/2,i

]
+
−
[
N

n+1/2
α+1/2,i

]
−

)
−
([

N
n+1/2
α−1/2,i

]
+
−
[
N

n+1/2
α−1/2,i

]
−

))
. (5.114)

The quantity

σn
i |ξ|Mn

α,j + Δtn
([

N
n+1/2
α+1/2,i

]
−

+
[
N

n+1/2
α−1/2,i

]
+

)
,

represents, at the microscopic level, the water leaving the cell Ci of the layer α during Δtn. A sufficient condition
to obtain the stability property, i.e.

lαHn+1
i =

∫
R

fn+1
α,i dξ ≥ 0, ∀i, for α = 1, . . . , N, (5.115)

is then ∫
R

(
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i |ξ|Mn
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+
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))
dξ ≤

∫
R
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α,idξ, (5.116)

and this requirement is satisfied when
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i .
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wind

z

x

Figure 4. The geometrical model with the horizontal mesh and the vertical discretization by
layers. In the horizontal direction, only 60 nodes are shown.

We recall that we have obtained in (5.109) an explicit form of G
n+1/2
α+1/2,i. If Δtn satisfies (5.113), then the

condition (5.115) is satisfied and that completes the proof. �

5.5. Second order scheme

The second-order accuracy in time is usually recovered by the Heun method [8] that is a slight modification
of the second order Runge-Kutta method. The advantage of the Heun scheme is that it preserves the invariant
domains without any additional limitation on the CFL.

We also apply a formally second order scheme in space by a limited reconstruction of the variables. An
advantage of the new multilayer approach with only one continuity equation is that the water height can be
reconstructed while preserving the mass conservation without difficulty.

5.6. Numerical simulations

In this paragraph we give several validations of the numerical scheme previously described. We first consider
a wind driven flow where a local analytical solution is available. Then we use the model in the classical test case
of a supercritical regime with important variations of the free surface. Finally we compare the multilayer model
with a 2D-(x, z) hydrostatic Navier-Stokes system based on a finite elements discretization and developed in
FreeFem++ [17].

5.6.1. Analytical solution

We claim in the introduction that the great interest of the new multilayer formulation that we proposed here
is to allow mass exchanges between layers. This effect is exhibited in the numerical test that we present now.
We consider a fluid in a rectangular closed basin with vertical shores and we impose a constant wind stress
(from left to right) at the free surface. The flow is then supposed to reach a stationary state with a recirculation
in the lake. Notice that this kind of stationary flows is clearly impossible to compute with the classical one-layer
shallow water system since the velocity is imposed to be constant along the vertical. They are also out of the
domain of application of the former multilayer shallow water system that was introduced by Audusse [1] since
they clearly involve large mass transfers (at least near the shores) between the layers. It is easy to deduce from
the mass conservation equations that the only stationary regime of the former multilayer model for a flow in a
closed basin is the flow at rest, as for the classical Saint-Venant model. The need of the new approach becomes
here very clear.
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Figure 5. The wind blows from the left part of the domain to the right part. The arrows
represent the velocity field in the lake.

The domain is 16 m long with an initial water height of 2 m. The mesh has 160 nodes in the x direction and
20 layers. The wind velocity (from left to right) is 20 m·s−1. We show the results on a postprocessing 2D mesh
that is presented in Figure 4. In Figure 5 we also present the two dimensional velocity vectors on this 2D mesh.
The results exhibit a global recirculation. Since we consider a shallow water type system, the vertical velocity
is not a variable of the computation. But it is possible to recover it for postprocessing purpose: departing from
the computed horizontal velocity we integrate the divergence free condition (3.31) on each layer and we use the
non penetration condition at the bottom (2.5) to evaluate an approximation of the vertical velocity.

For this test case, the bottom velocity is imposed to be zero by prescribing a very large Navier friction
coefficient. Then there exists an analytical solution of the velocity profile at mid-length of the lake. This
calculation is detailed in [27]. In Figure 6a we compare the analytical solution with the results obtained with
the multilayer model for different vertical discretizations. We have used a viscosity of ν = 0.01 m2·s−1. In
Figure 6b, we plot the rate of error versus the vertical discretization, namely the number of layers. We have
plotted the log(L1 − error) of the horizontal velocity – at mid-length of the domain – versus log(h0/hi). We
denote by hi the average cell height, h0 is the average cell height of the coarser mesh. These errors have been
computed on 4 meshes with 5, 10, 20 and 30 layers. For each mesh, the horizontal discretization is taken very
precise meaning the error associated with the horizontal discretization can be neglected. Even if we use a second
order scheme (see Sect. 5.5) for the hyperbolic part of the model, the friction and exchange terms are discretized
using a 1st order scheme. So it appears that the computed convergence rates are closed to 1.7.

5.6.2. Transcritical flow over a bump

Then we consider an academic test case that is very commonly used for the validation of classical one-layer
shallow water solvers. Here we add some friction at the bottom in order to compare solutions of one-layer and
multilayer shallow water systems with the solution of hydrostatic incompressible Navier-Stokes equations. We
impose an inflow (left boundary) of 1.0 m2·s−1 and the water height at the exit (right boundary) is prescribed
to be equal to 0.6 m. The Strickler friction coefficient at the bottom is 30 m−3·s−1 and the kinematic viscosity
is 0.01 m2·s−1. The data are chosen such that the flow is supposed to reach a stationary regime that presents
some transitions between sub- and supercritical parts and an hydraulic jump. Notice that an analytical solution
exists for this test in the case of a single layer [3,25].

The simulation results are depicted in Figures 7–9. Notice that the actual computations are purely one
dimensional. Hence Figures 7 and 8 present velocity results on a postprocessing mesh that is constructed
departing from the 1d mesh by the use of the computed layer water heights. The presented results correspond
to an instant tf where the permanent regime is achieved.

The results depicted in Figures 7 and 8 are consistent with computations performed using the hydrostatic
Navier-Stokes equations of TELEMAC-3d [6,14] and also using the former multilayer Saint-Venant system [6].
The results depicted in Figure 9 exhibit that the presented solver is quite robust since it is able to compute
transcritical solutions and shock waves even when a large number of layers is considered. This kind of robustness
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Figure 6. (a) Comparison between the analytical and simulated solutions and (b) convergence rate.

Figure 7. Horizontal velocities {uα(x, tf )}N
α=1 with N = 15 layers.

Figure 8. Vertical velocity {wα(x, tf )}N
α=1 with N = 15 layers.

is far from being obvious for 3d Navier-Stokes solvers where the mesh has to follow the movements of the free
surface. Notice also that the hydraulic jump appears to be overestimated by the one-layer computation when
compared with other results – see Figure 9.
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Figure 9. Shape of the free surface for simulations carried out with different number of layers.

Figure 10. The geometrical model with the horizontal mesh and the vertical discretization by layers.

5.6.3. Comparison with a finite element simulations of the hydrostatic Navier-Stokes system

We have also compared our simulations with results obtained using a finite element discretization of the
hydrostatic Navier-Stokes system. The finite element formulation is P1/P1 for the velocity and the pressure and
uses a stabilization technique. The formulation is available in the FreeFem++ code [17].

We still consider a wind driven flow with vertical shores but with a non trivial bottom. The domain is 6 m
long with an initial water height of 2 m. The mesh has 160 nodes in the x direction and 20 layers. The wind
velocity (from left to right) is 10 m·s−1. We have used a viscosity of ν = 0.1 m2·s−1 and a Navier type bottom
friction with κ = 0.1 m·s−1. For each simulation (multilayer approach or finite elements approximation), the
mesh has approximatively 1000 nodes. For the multilayer approach, the results on a postprocessing 2D mesh
(see Fig. 10) are presented in Figure 11 where we have plotted the two dimensional velocity vectors (u, w)T . In
Figure 12 the results obtained with the finite elements code are shown. The results exhibit a global recirculation
that is combined with two local recirculations that are induced by the topography of the lake. The qualitative
aspect of the solution is consistent with the previsions.

The FreeFem++ code, solving the full Navier-Stokes system serves as a reference. It is however not straight-
forward to analyze the origin of the differences because the boundary conditions are not imposed in the same
way. But in the examples presented in Figures 11 and 12 whereas the viscosity and the bottom friction are
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(a) (b)

Figure 11. The wind blows from the left part of the domain to the right part. The arrows
represent the velocity field in the lake. (a) Multilayer code and (b) finite element code.

(a) (b)

Figure 12. Same as Figure 11 but we plot the velocity norm
√

u2 + w2.

large, the simulations are in agreement. The vertical velocity w is overestimated by the multilayer code. This
mainly comes from the fact that in the multilayer approach, w is calculated offline using u and the divergence
free condition whereas in the finite element formulation, w follows a dynamical equation

ε̃

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
+

∂p

∂z
= −g + ε̃

∂Σzx

∂x
+ ε̃

∂Σzz

∂z
,

with ε̃ 
 1. Notice also that the difference of shape for the step in Figures 11 and 12 only comes from the mesh
reconstruction/interpolation procedure in the multilayer approach.

It is also difficult to compare the computational costs of the multilayer model and of the FE discretization
since the simulations uses different tools. Nevertheless, if the simulation cost of a single layer Saint-Venant
system is T , it is worth being noticed that without any parallelisation, the computational cost of a N layers
system is only NT .

6. Conclusion

In this paper, the authors have described a multilayer Saint-Venant system with mass exchanges. The
derivation of the model, the study of its main properties and a numerical scheme for its discretization are given.
Because of its accuracy and simplicity, the kinetic scheme seems well adapted for the simulations of such a
model. Moreover since the eigenvalues of the hyperbolic system are not explicitly known, a lot of finite volume
schemes fails in this situation [4].

Some validations of the numerical scheme are also presented especially comparisons with analytical solutions
and with a finite element discretization of the Navier-Stokes system. The simulations prove the robustness
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of the multilayer approach to treat as well flows with large variations of the free surface as flows with important
mass exchanges. The proposed multilayer formulation approximates the hydrostatic Navier-Stokes system and
all the test cases considered prove the efficiency of the approach to simulate hydrostatic free surface flows.
Notice that the model and the results presented here in 2d (x, z) are also available in 3d (x, y, z) that allows us
to solve realistic problems.

As depicted in Figure 10, the vertical discretization proposed for water height leads to a regular mesh.
A strategy of “mesh refinement” based on a inhomogeneous number of layers has to be added. The presented
system can be enriched in several ways. First, the hydrostatic assumption concerning the pressure terms can be
relaxed leading to the models presented in [11]. Then we can also consider a passive pollutant in the flow. This
implies to add a conservation equation for the pollutant concentration. Finally, we can consider the density of
the fluid varies with the concentration of pollutant. These three improvements have been added to their model
by the authors and will be presented in forthcoming papers.
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