An iterative procedure to solve a coupled two-fluids turbulence model
ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 4, pp. 693-713.

This paper introduces a scheme for the numerical approximation of a model for two turbulent flows with coupling at an interface. We consider the variational formulation of the coupled model, where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence of the approximation to this formulation for 3D flows for large turbulent viscosities and smooth enough flows, whenever bounded in W1,p Sobolev norms for p large enough. Under the same assumptions, we show that the limit is a solution of the initial problem. Finally, we give some numerical experiments to enlighten the theoretical work.

DOI : 10.1051/m2an/2010015
Classification : 63N30, 76M10
Mots clés : ocean-atmosphere coupling, turbulent flows, convergence analysis, iterative method, spectral method
@article{M2AN_2010__44_4_693_0,
     author = {Chac\'on Rebollo, Tomas and Del Pino, St\'ephane and Yakoubi, Driss},
     title = {An iterative procedure to solve a coupled two-fluids turbulence model},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {693--713},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {4},
     year = {2010},
     doi = {10.1051/m2an/2010015},
     mrnumber = {2683579},
     zbl = {1234.76037},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2010015/}
}
TY  - JOUR
AU  - Chacón Rebollo, Tomas
AU  - Del Pino, Stéphane
AU  - Yakoubi, Driss
TI  - An iterative procedure to solve a coupled two-fluids turbulence model
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 693
EP  - 713
VL  - 44
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2010015/
DO  - 10.1051/m2an/2010015
LA  - en
ID  - M2AN_2010__44_4_693_0
ER  - 
%0 Journal Article
%A Chacón Rebollo, Tomas
%A Del Pino, Stéphane
%A Yakoubi, Driss
%T An iterative procedure to solve a coupled two-fluids turbulence model
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 693-713
%V 44
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2010015/
%R 10.1051/m2an/2010015
%G en
%F M2AN_2010__44_4_693_0
Chacón Rebollo, Tomas; Del Pino, Stéphane; Yakoubi, Driss. An iterative procedure to solve a coupled two-fluids turbulence model. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 4, pp. 693-713. doi : 10.1051/m2an/2010015. http://www.numdam.org/articles/10.1051/m2an/2010015/

[1] J.J.F. Adams and R.A. Fournier, Sobolev spaces. Second edition, Pure and Applied Mathematics Series, Elsevier/Academic Press (2003). | Zbl

[2] C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques, Mathematics & Applications 10. Springer-Verlag (1992). | Zbl

[3] C. Bernardi, T. Chacón Rebollo, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. I. Analysis of the system, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl. 31, Amsterdam, North-Holland (2002) 69-102. | Zbl

[4] C. Bernardi, T. Chacón Rebollo, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. II. Numerical analysis of a spectral discretization. SIAM J. Numer. Anal. 40 (2003) 2368-2394. | Zbl

[5] C. Bernardi, T. Chacón Rebollo, M. Gómez Mármol, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. III. Numerical approximation by finite elements. Numer. Math. 98 (2004) 33-66. | Zbl

[6] C. Bernardi, T. Chacón Rebollo, F. Hecht and R. Lewandowski, Automatic insertion of a turbulence model in the finite element discretization of the Navier-Stokes Equations. Math. Mod. Meth. Appl. Sci. 19 (2009) 1139-1183. | Zbl

[7] H. Brezis, Analyse Fonctionnelle : Théorie et Applications. Collection “Mathématiques Appliquées pour la Maîtrise”, Masson (1983). | Zbl

[8] F. Brossier and R. Lewandowski, Impact of the variations of the mixing length in a first order turbulent closure system. ESAIM: M2AN 36 (2002) 345-372. | Numdam | Zbl

[9] K. Bryan, A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 4 (1969) 347-369. | Zbl

[10] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods - Fundamentals in single domains. Springer, Berlin, Germany (2006). | Zbl

[11] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods - Evolution to complex geometries and applications to fluid dynamics. Springer, Berlin, Germany (2007). | Zbl

[12] S. Del Pino and O. Pironneau, A fictitious domain based on general pde's solvers, in Proc. ECCOMAS 2001, Swansea, K. Morgan Ed., Wiley (2002).

[13] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Germany (1986). | Zbl

[14] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24. Pitman (Advanced Publishing Program), Boston, USA (1985). | Zbl

[15] E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes 5. American Mathematical Society, USA (1999). | Zbl

[16] B.E. Launder and D.B. Spalding, Mathematical Modeling of Turbulence. Academic Press, London, UK (1972). | Zbl

[17] J. Lederer and R. Lewandowski, A RANS 3D model with unbounded eddy viscosities. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 413-441. | Numdam | Zbl

[18] R. Lewandowski, Analyse Mathématique et Océanographie. Collection Recherches en Mathématiques Appliquées, Masson (1997).

[19] R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity. Nonlinear Anal. 28 (1997) 393-417. | Zbl

[20] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 3, Travaux et Recherches Mathématiques 20. Dunod, Paris, France (1970). | Zbl

[21] B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model. RAM: Research in Applied Mathematics. Masson, Paris (1994).

[22] J. Piquet, Turbulent Flows, Models and Physics. Springer, Germany (1999). | Zbl

[23] D.C. Wilcox, Turbulence Modeling for CFD. Sixth edition, DCW Industries, inc. California, USA (2006).

[24] D. Yakoubi, Analyse et mise en œuvre de nouveaux algorithmes en méthodes spectrales. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France (2007).

Cité par Sources :