@article{AIHPC_2007__24_3_413_0, author = {Lederer, J. and Lewandowski, R.}, title = {A {RANS} {3D} model with unbounded eddy viscosities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {413--441}, publisher = {Elsevier}, volume = {24}, number = {3}, year = {2007}, doi = {10.1016/j.anihpc.2006.03.011}, mrnumber = {2321200}, zbl = {1132.35069}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.011/} }
TY - JOUR AU - Lederer, J. AU - Lewandowski, R. TI - A RANS 3D model with unbounded eddy viscosities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 413 EP - 441 VL - 24 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.011/ DO - 10.1016/j.anihpc.2006.03.011 LA - en ID - AIHPC_2007__24_3_413_0 ER -
%0 Journal Article %A Lederer, J. %A Lewandowski, R. %T A RANS 3D model with unbounded eddy viscosities %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 413-441 %V 24 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.011/ %R 10.1016/j.anihpc.2006.03.011 %G en %F AIHPC_2007__24_3_413_0
Lederer, J.; Lewandowski, R. A RANS 3D model with unbounded eddy viscosities. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 3, pp. 413-441. doi : 10.1016/j.anihpc.2006.03.011. http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.011/
[1] Sobolev Spaces, Academic Press, 1975. | MR | Zbl
,[2] The Theory of Homogeneous Turbulence, Cambridge University Press, 1953. | MR | Zbl
,[3] A model for two coupled turbulent fluids, part 1: Analysis of the system, in: Series in Applied Mathematics, vol. 34, North-Holland, 2002, pp. 69-102. | Zbl
, , , ,[4] A model for two coupled turbulent fluids, part 2: Numerical approximation by spectral discretization, SIAM J. Numer. Anal. 40 (2003) 2368-2394. | Zbl
, , , ,[5] A model for two coupled turbulent fluids, part 3: Approximation by finite elements, Numer. Math. 98 (2004) 33-66. | MR | Zbl
, , , ,[6] Variability of the tropical atlantic ocean by a general circulation model with two different mixed layer physic, J. Phys. Ocean. 23 (1993) 1363-1388.
, ,[7] Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989) 149-169. | MR | Zbl
, ,[8] Analyse fonctionnelle, seconde ed., Masson, 1993. | MR | Zbl
,[9] On a first order closure system modelizing turbulent flows, Math. Modelling Numer. Anal. 36 (2002) 345-372. | Numdam | MR | Zbl
, ,[10] Oscillations due to the transport of microstructures, SIAM J. Appl. Math. 48 (1988) 1128-1146. | MR | Zbl
,[11] Camassa-Holm equation as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett. 81 (1998) 5338-5341. | Zbl
, , , , ,[12] S. Clain, Analyse mathématique et numérique d'un modèle de chauffage par induction, PhD thesis, École Polytechnique Fédérale de Lausanne, 1994.
[13] Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients, RAIRO Model. Math. Anal. Numer. 7 (1997) 845-870. | Numdam | MR | Zbl
, ,[14] Elliptic Boundary Value Problem on Corner Domains: Smoothness and Asymptotics 0, Springer-Verlag, 1988. | MR | Zbl
,[15] A note on the stability functions of the Mellor-Yamada level 2 1/2 turbulence closure model, Bull. Soc. Roy. Sc. Liège 61 (1992) 397-404.
,[16] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547. | MR | Zbl
, ,[17] Buoyant Convection in Geophysical Flows, Kluwer, 1998.
, , , (Eds.),[18] Existence of a solution to a coupled elliptic system, Appl. Math. Lett. 2 (1994) 49-55. | MR | Zbl
, ,[19] On a turbulent system with unbounded eddy viscosities, J. Nonlinear Anal. 52 (2003) 1051-1068. | MR | Zbl
, , , , ,[20] Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1986. | Zbl
, ,[21] Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Pitman, Boston, 1985. | MR | Zbl
,[22] Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. 51 (1934) 45-78. | JFM | Numdam | MR
, ,[23] Analyse Mathématique et Océanographie, Masson, 1997.
,[24] The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity, Nonlinear Anal. 28 (1997) 393-417. | Zbl
,[25] Existence and positivity results for the θ-φ model and a modified k-ε model, Math. Models Methods Appl. Sci. 3 (1993) 195-217. | Zbl
, ,[26] R. Lewandowski, G. Pichot, Application of the fictive domain decomposition method and numerical simulations of water flow around a rigid net, 2006, submitted for publication.
[27] P.-L. Lions, F. Murat, Renormalisation des équations elliptiques, 1995.
[28] P.H. Maire, Etude d'une équation de diffusion non linéaire. Application à la discrétisation de l'équation de l'énergie cinétique turbulente pour un modèle de turbulence à une équation, Publications internes du CEA, 2001.
[29] Development of turbulence closure model for geophysical fluid problem, Rev. Geophys. Space Phys. 20 (1982) 851-875.
, ,[30] Analysis of the k-Epsilon Model, Masson, 1994. | MR
, ,[31] Local behavior of solutions of quasi linear equations, Acta Math. (1964). | MR | Zbl
,[32] Équations elliptiques du second ordre à coefficients discontinus, Les presses de l'université de Montréal, 1966. | MR | Zbl
,[33] Navier Stokes Equations, North-Holland, 1984. | MR | Zbl
,Cité par Sources :