We study the potential which minimizes the fundamental gap of the Schrödinger operator under the total mass constraint. We consider the relaxed potential and prove a regularity result for the optimal one, we also give a description of it. A consequence of this result is the existence of an optimal potential under L1 constraints.
Mots-clés : Schrödinger operator, eigenvalue problems, measure theory, shape optimization
@article{COCV_2010__16_1_194_0, author = {Varchon, Nicolas}, title = {Optimal measures for the fundamental gap of {Schr\"odinger} operators}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {194--205}, publisher = {EDP-Sciences}, volume = {16}, number = {1}, year = {2010}, doi = {10.1051/cocv:2008069}, mrnumber = {2598095}, zbl = {1183.35092}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008069/} }
TY - JOUR AU - Varchon, Nicolas TI - Optimal measures for the fundamental gap of Schrödinger operators JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 194 EP - 205 VL - 16 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008069/ DO - 10.1051/cocv:2008069 LA - en ID - COCV_2010__16_1_194_0 ER -
%0 Journal Article %A Varchon, Nicolas %T Optimal measures for the fundamental gap of Schrödinger operators %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 194-205 %V 16 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008069/ %R 10.1051/cocv:2008069 %G en %F COCV_2010__16_1_194_0
Varchon, Nicolas. Optimal measures for the fundamental gap of Schrödinger operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 194-205. doi : 10.1051/cocv:2008069. http://www.numdam.org/articles/10.1051/cocv:2008069/
[1] On minimal and maximal eigenvalue gaps and their causes. Pacific J. Math. 147 (1991) 1-24. | Zbl
, and ,[2] Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Their Applications 65. Birkhäuser, Basel, Boston (2005). | Zbl
and ,[3] Strict monotonicity of the second eigenvalue of the Laplace operator on relaxed domain. Bull. Appl. Comp. Math. 1510-1566 (1998) 115-122.
and ,[4] Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London 456 (2000) 985-996. | Zbl
and ,[5] Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17-49. | Zbl
and ,[6] Optimal measures for elliptic problems. Annali Mat. Pur. Appl. 185 (2006) 207-221.
, and ,[7] Methods of Mathematical Physics. Interscience Publishers (1953). | Zbl
and ,[8] Γ-convergence and µ-capacities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) 423-464. | Numdam | Zbl
,[9] An introduction to Γ-convergence. Birkhäuser, Boston (1993). | Zbl
,[10] Wiener's criterion and Γ-convergence. Appl. Math. Optim. 15 (1987) 15-63. | Zbl
and ,[11] Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). | Zbl
and ,[12] Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel, Boston, Berlin (2006). | Zbl
,[13] Perturbation Theory for Linear Operators. Springer-Verlag (1980). | Zbl
,[14] Optimal measures for nonlinear cost functionals. Appl. Mat. Opt. 54 (2006) 205-221. | Zbl
,[15] Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). | Zbl
,Cité par Sources :