@article{ASNSP_1987_4_14_3_423_0, author = {Dal Maso, Gianni}, title = {$\Gamma $-convergence and $\mu $-capacities}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {423--464}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 14}, number = {3}, year = {1987}, zbl = {0657.49005}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1987_4_14_3_423_0/} }
TY - JOUR AU - Dal Maso, Gianni TI - $\Gamma $-convergence and $\mu $-capacities JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1987 SP - 423 EP - 464 VL - 14 IS - 3 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1987_4_14_3_423_0/ LA - en ID - ASNSP_1987_4_14_3_423_0 ER -
%0 Journal Article %A Dal Maso, Gianni %T $\Gamma $-convergence and $\mu $-capacities %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1987 %P 423-464 %V 14 %N 3 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1987_4_14_3_423_0/ %G en %F ASNSP_1987_4_14_3_423_0
Dal Maso, Gianni. $\Gamma $-convergence and $\mu $-capacities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 14 (1987) no. 3, pp. 423-464. http://www.numdam.org/item/ASNSP_1987_4_14_3_423_0/
[1] Variational convergence for functions and operators. Pitman, London, 1984. | MR | Zbl
:[2] Asymptotic capacities for finely divided bodies and stopped diffusions. Illinois J. Math. 31 (1987), 469-495. | MR | Zbl
, :[3] Mosco: Stopping times and Γ-convergence. Trans. Amer. Math. Soc. 303 (1987), 1-38. | Zbl
,[4] On Topologies and Boundaries in Potential Theory. Lecture Notes in Mathematics 175, Springer, Berlin, 1971. | MR | Zbl
:[5] Mosco: A derivation theorem for capacities with respect to a Radon measure. J. Funct. Anal. 71 (1987), 263-278. | MR | Zbl
,[6] Forme abstraite du théorème de capacitabilité. Ann. Inst. Fourier 9 (1959), 83-89. | Numdam | MR | Zbl
:[7] Convergence faible et capacités. Boll. Un. Mat. Ital. 17 - B (1980), 440-457. | MR | Zbl
:[8] Asymptotic behaviour of minimum problems with bilateral obstacles. Ann. Mat. Pura Appl. 129 (1981), 327-366. | MR
:[9] On the integral representation of certain local functionals. Ricerche Mat. 32 (1983), 85-113. | MR | Zbl
:[10] Some necessary and sufficient conditions for the convergence of sequences of unilateral convex sets. J. Funct. Anal. 62 (1985), 119-159. | MR | Zbl
:[11] Mosco: Wiener's criterion and Γ-convergence. Appl. Math Optim. 15 (1987), 15-63. | Zbl
[12] Mosco: The Wiener modulus of a radial measure. To appear on Houston J. Math. | MR | Zbl
[13] Wiener criteria and energy decay for relaxed Dirichlet problems. Arch. Rational Mech. Anal. 95 (1986), 345-387. | MR | Zbl
, :[14] Γ-convergence and calculus of variations. In J.P. Cecconi, T. Zolezzi (eds) Mathematical Theories of Optimization. Proceedings, S. Margherita Ligure, 1981. Lecture Notes in Mathematics 979, Springer, Berlin, 1983. | Zbl
, :[15] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Sci. Fis. Natur. 58 (1975), 842-850; Rend. Sem. Mat. Brescia 3 (1979), 63-101. | MR | Zbl
, :[16] Une notion générale de convergence faible pour des fonctions croissantes d' ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977), 61-99. | Numdam | MR | Zbl
, :[17] Classical potential theory and its probabilistic counterpart. Springer, Berlin, 1984. | MR | Zbl
:[18] The Lebesgue set of function whose distribution derivatives are p-th power summable. Indiana Univ. Math. J. 22 (1972), 139-158. | MR | Zbl
, :[19] The quasi topology associated with a countably subadditive set function. Ann. Inst. Fourier 21 (1971), 123-169. | Numdam | MR | Zbl
:[20] Finely harmonic functions. Lecture notes in Mathematics 289, Springer, Berlin. 1972. | MR | Zbl
:[21] Convergence of convex sets and of solutions of variational inequalities. Adv. in Math. 3 (1969), 510-585. | MR | Zbl
:[22] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15 (1965), 189-258. | Numdam | MR | Zbl
: