Structure of approximate solutions of variational problems with extended-valued convex integrands
ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 4, pp. 872-894.

In this work we study the structure of approximate solutions of autonomous variational problems with a lower semicontinuous strictly convex integrand f : R n ×R n R 1 {}, where R n is the n-dimensional euclidean space. We obtain a full description of the structure of the approximate solutions which is independent of the length of the interval, for all sufficiently large intervals.

DOI : 10.1051/cocv:2008053
Classification : 49J99
Mots-clés : good function, infinite horizon, integrand, overtaking optimal function, turnpike property
@article{COCV_2009__15_4_872_0,
     author = {Zaslavski, Alexander J.},
     title = {Structure of approximate solutions of variational problems with extended-valued convex integrands},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {872--894},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {4},
     year = {2009},
     doi = {10.1051/cocv:2008053},
     mrnumber = {2567250},
     zbl = {1175.49002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2008053/}
}
TY  - JOUR
AU  - Zaslavski, Alexander J.
TI  - Structure of approximate solutions of variational problems with extended-valued convex integrands
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2009
SP  - 872
EP  - 894
VL  - 15
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2008053/
DO  - 10.1051/cocv:2008053
LA  - en
ID  - COCV_2009__15_4_872_0
ER  - 
%0 Journal Article
%A Zaslavski, Alexander J.
%T Structure of approximate solutions of variational problems with extended-valued convex integrands
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2009
%P 872-894
%V 15
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2008053/
%R 10.1051/cocv:2008053
%G en
%F COCV_2009__15_4_872_0
Zaslavski, Alexander J. Structure of approximate solutions of variational problems with extended-valued convex integrands. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 4, pp. 872-894. doi : 10.1051/cocv:2008053. http://www.numdam.org/articles/10.1051/cocv:2008053/

[1] H. Atsumi, Neoclassical growth and the efficient program of capital accumulation. Rev. Econ. Studies 32 (1965) 127-136.

[2] L. Cesari, Optimization - theory and applications. Springer-Verlag, New York (1983). | MR | Zbl

[3] D. Gale, On optimal development in a multi-sector economy. Rev. Econ. Studies 34 (1967) 1-18.

[4] M. Giaquinta and E. Guisti, On the regularity of the minima of variational integrals. Acta Math. 148 (1982) 31-46. | MR | Zbl

[5] A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost. Appl. Math. Opt. 13 (1985) 19-43. | MR | Zbl

[6] A. Leizarowitz and V.J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics. Arch. Rational Mech. Anal. 106 (1989) 161-194. | MR | Zbl

[7] M. Marcus and A.J. Zaslavski, The structure of extremals of a class of second order variational problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 593-629. | Numdam | MR | Zbl

[8] L.W. Mckenzie Classical general equilibrium theory. The MIT press, Cambridge, Massachusetts, USA (2002). | MR | Zbl

[9] J. Moser, Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986) 229-272. | Numdam | MR | Zbl

[10] P.H. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 673-688. | Numdam | MR | Zbl

[11] P.H. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert. II. Adv. Nonlinear Stud. 4 (2004) 377-396. | MR

[12] R.T. Rockafellar, Convex analysis. Princeton University Press, Princeton, USA (1970). | MR | Zbl

[13] P.A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule. Am. Econ. Rev. 55 (1965) 486-496.

[14] C.C. Von Weizsacker, Existence of optimal programs of accumulation for an infinite horizon. Rev. Econ. Studies 32 (1965) 85-104.

[15] A.J. Zaslavski, Optimal programs on infinite horizon 1. SIAM J. Contr. Opt. 33 (1995) 1643-1660. | MR | Zbl

[16] A.J. Zaslavski, Optimal programs on infinite horizon 2. SIAM J. Contr. Opt. 33 (1995) 1661-1686. | MR | Zbl

[17] A.J. Zaslavski, Turnpike properties in the calculus of variations and optimal control. Springer, New York (2006). | MR | Zbl

[18] A.J. Zaslavski, Structure of extremals of autonomous convex variational problems. Nonlinear Anal. Real World Appl. 8 (2007) 1186-1207. | MR

[19] A.J. Zaslavski, A turnpike result for a class of problems of the calculus of variations with extended-valued integrands. J. Convex Analysis (to appear). | Zbl

Cité par Sources :