@article{AIHPC_1999__16_5_593_0, author = {Marcus, Moshe and Zaslavski, Alexander J.}, title = {The structure of extremals of a class of second order variational problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {593--629}, publisher = {Gauthier-Villars}, volume = {16}, number = {5}, year = {1999}, mrnumber = {1712568}, zbl = {0989.49003}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1999__16_5_593_0/} }
TY - JOUR AU - Marcus, Moshe AU - Zaslavski, Alexander J. TI - The structure of extremals of a class of second order variational problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 1999 SP - 593 EP - 629 VL - 16 IS - 5 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1999__16_5_593_0/ LA - en ID - AIHPC_1999__16_5_593_0 ER -
%0 Journal Article %A Marcus, Moshe %A Zaslavski, Alexander J. %T The structure of extremals of a class of second order variational problems %J Annales de l'I.H.P. Analyse non linéaire %D 1999 %P 593-629 %V 16 %N 5 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1999__16_5_593_0/ %G en %F AIHPC_1999__16_5_593_0
Marcus, Moshe; Zaslavski, Alexander J. The structure of extremals of a class of second order variational problems. Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999) no. 5, pp. 593-629. http://www.numdam.org/item/AIHPC_1999__16_5_593_0/
[1] Sobolev spaces, Academic Press, New York, 1975. | MR | Zbl
,[2] Applied nonlinear analysis, Wiley-Interscience, New York, 1984. | MR | Zbl
and ,[3] Lower semicontinuity of integral functionals, Trans. Amer. Math. Soc., Vol. 192, 1974, pp. 51-57. | MR | Zbl
,[4] The existence of catching-up optimal solutions for a class of infinite horizon optimal control problems with time delay, SIAM Journal on Control and Optimization, Vol. 28 , 1990, pp. 402-422. | MR | Zbl
,[5] Existence of overtaking solutions to infinite dimensional control problems on unbounded time intervals, SIAM Journal on Control and Optimization, Vol. 25, 1987 , pp. 1517-1541. | MR | Zbl
, and ,[6] Infinite horizon optimal control, Springer-Verlag, Berlin, 1991. | MR | Zbl
, and ,[7] On the thermodynamics of periodic phases, Arch. Rational Mech. Anal., Vol. 117, 1992, pp. 321-347. | MR | Zbl
, and ,[8] General topology, Van Nostrand , Princeton, NJ, 1955. | MR | Zbl
,[9] Infinite horizon autonomous systems with unbounded cost, Appl. Math. Optim., Vol. 13, 1985 , pp. 19-43. | MR | Zbl
,[10] One dimensional infinite horizon variational problems arising in continuum mechanics , Arch. Rational Mech. Anal., Vol. 106, 1989, pp. 161- 194. | MR | Zbl
and ,[11] Mathematical theory of econimic dynamics and equilibria, Springer -Verlag, New York, 1977. | MR | Zbl
and ,[12] Uniform estimates for a variational problem with small parameters, Arch. Rational Mech. Anal., Vol. 124, 1993 , pp. 67-98. | MR | Zbl
,[13] Universal properties of stable states of a free energy model with small parameters, Cal. Var. , to appear. | MR | Zbl
,[14] Periodic phases in second order materials, Preprint, 1997. | MR
, and ,[15] The existence of periodic minimal energy configurations for one-dimensional infinite horizon variational problems arising, in continuum mechanics, J. Math. Anal. Appl., Vol. 194, 1995, pp. 459-476. | MR | Zbl
,[16] The existence and structure of extremals for a class of second order infinite horizon variational problems, J. Math. Anal. Appl., Vol. 194, 1995, pp. 660-696. | MR | Zbl
,[17] Structure of extremals for one-dimensional variational problems arising in continuum mechanics , J. Math. Anal. Appl., Vol. 198, 1996, pp. 893-921. | MR | Zbl
,[18] The asymptotic turnpike property and the uniqueness of a periodic minimal solution for one-dimensional variational problems, Preprint, 1996. | MR
,