In this paper we study the lower semicontinuous envelope with respect to the -topology of a class of isotropic functionals with linear growth defined on mappings from the -dimensional ball into that are constrained to take values into a smooth submanifold of .
Mots clés : relaxation, manifold constrain, BV functions
@article{COCV_2009__15_2_295_0, author = {Mucci, Domenico}, title = {Relaxation of isotropic functionals with linear growth defined on manifold constrained {Sobolev} mappings}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {295--321}, publisher = {EDP-Sciences}, volume = {15}, number = {2}, year = {2009}, doi = {10.1051/cocv:2008026}, mrnumber = {2513088}, zbl = {1167.49015}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008026/} }
TY - JOUR AU - Mucci, Domenico TI - Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 295 EP - 321 VL - 15 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008026/ DO - 10.1051/cocv:2008026 LA - en ID - COCV_2009__15_2_295_0 ER -
%0 Journal Article %A Mucci, Domenico %T Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 295-321 %V 15 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008026/ %R 10.1051/cocv:2008026 %G en %F COCV_2009__15_2_295_0
Mucci, Domenico. Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 295-321. doi : 10.1051/cocv:2008026. http://www.numdam.org/articles/10.1051/cocv:2008026/
[1] 3D-2D asymptotic analysis for micromagnetic thin films. ESAIM: COCV 6 (2001) 489-498. | Numdam | MR | Zbl
and ,[2] Relaxation in of functionals defined on Sobolev functions with values into the unit sphere. J. Convex Anal. 14 (2007) 69-98. | MR | Zbl
, and ,[3] Functions of bounded variation and free discontinuity problems, Oxford Math. Monographs. Oxford (2000). | MR | Zbl
, and ,[4] The approximation problem for Sobolev maps between manifolds. Acta Math. 167 (1992) 153-206. | MR | Zbl
,[5] Manifold constrained variational problems. Calc. Var. 9 (1999) 185-206. | MR | Zbl
, , and ,[6] Relaxed energies for functionals on . Nonlinear Anal. 19 (1992) 625-641. | MR | Zbl
and ,[7] Geometric measure theory, Grundlehren math. Wissen. 153. Springer, Berlin (1969). | MR | Zbl
,[8] Relaxation of quasiconvex functionals in for integrands . Arch. Rat. Mech. Anal. 123 (1993) 1-49. | MR | Zbl
and ,[9] Relaxation of multiple integrals in the space . Proc. Royal Soc. Edin. 121A (1992) 321-348. | MR | Zbl
and ,[10] Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in variabili. Rend. Sem. Mat. Univ. Padova 27 (1957) 284-305. | Numdam | MR | Zbl
,[11] The -energy of maps into a manifold: relaxation and density results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006) 483-548. | Numdam | MR | Zbl
and ,[12] Maps into manifolds and currents: area and -, -, -energies. Edizioni della Normale, C.R.M. Series, Sc. Norm. Sup. Pisa (2006). | MR | Zbl
and ,[13] Erratum and addendum to: The -energy of maps into a manifold: relaxation and density results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 6 (2007) 185-194. | MR | Zbl
and ,[14] Relaxation results for a class of functionals with linear growth defined on manifold constrained mappings. Journal of Convex Analysis 15 (2008) (online). | MR
and ,[15] Variational problems for maps of bounded variations with values in . Calc. Var. 1 (1993) 87-121. | MR | Zbl
, and ,[16] Cartesian currents in the calculus of variations, I, II. Ergebnisse Math. Grenzgebiete (III Ser.) 37, 38. Springer, Berlin (1998). | MR | Zbl
, and ,[17] Ground states in complex bodies. ESAIM: COCV (to appear). | Numdam | MR | Zbl
and ,[18] Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 1039-1045. | Zbl
,Cité par Sources :