Let be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its -homology group has notorsion. Weak limits of graphs of smooth maps with equibounded total variation give riseto equivalence classes of cartesian currents in for which we introduce a natural-energy.Assume moreover that the first homotopy group of iscommutative. In any dimension we prove that every element in can be approximatedweakly in the sense of currents by a sequence of graphs of smoothmaps with total variation converging to the-energy of . As a consequence, we characterize the lowersemicontinuous envelope of functions of bounded variations from into .
@article{ASNSP_2006_5_5_4_483_0, author = {Giaquinta, Mariano and Mucci, Domenico}, title = {The $BV$-energy of maps into a manifold : relaxation and density results}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {483--548}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {4}, year = {2006}, zbl = {1150.49020}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2006_5_5_4_483_0/} }
TY - JOUR AU - Giaquinta, Mariano AU - Mucci, Domenico TI - The $BV$-energy of maps into a manifold : relaxation and density results JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 483 EP - 548 VL - 5 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2006_5_5_4_483_0/ LA - en ID - ASNSP_2006_5_5_4_483_0 ER -
%0 Journal Article %A Giaquinta, Mariano %A Mucci, Domenico %T The $BV$-energy of maps into a manifold : relaxation and density results %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 483-548 %V 5 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2006_5_5_4_483_0/ %G en %F ASNSP_2006_5_5_4_483_0
Giaquinta, Mariano; Mucci, Domenico. The $BV$-energy of maps into a manifold : relaxation and density results. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 4, pp. 483-548. http://www.numdam.org/item/ASNSP_2006_5_5_4_483_0/
[1] Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 439-478. | EuDML | Numdam | MR | Zbl
,[2] “Functions of bounded Variation and Free Discontinuity Problems”, Oxford Math. Monographs, Oxford, 2000. | MR | Zbl
, and ,[3] Currents in metric spaces, Acta Math. 185 (2000), 1-80. | MR | Zbl
and ,[4] Variational integrals of mappings of bounded variation and their lower semicontinuity, Arch. Ration. Mech. Anal. 115 (1991), 201-255. | MR | Zbl
and ,[5] The approximation problem for Sobolev maps between manifolds, Acta Math. 167 (1992), 153-206. | MR | Zbl
,[6] A cohomological criterium for density of smooth maps in Sobolev spaces between two manifolds, In: “Nematics, Mathematical and Physical Aspects”, J. M. Coron, J. M. Ghidaglia, F. Helein (eds.), NATO ASI Series C, 332, Kluwer Academic Publishers, Dordrecht, 1991, 15-23. | MR | Zbl
, , and ,[7] New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Anal. 15 (1990), 679-692. | MR | Zbl
and ,[8] -maps with value into , In: “Geometric Analysis of PDE and Several Complex Variables”, S. Chanillo, P. Cordaro, N. Hanges and A. Meziani (eds.), Contemporary Mathematics, 368, American Mathematical Society, Providence, RI, 2005, 69-100. | MR | Zbl
, and ,[9] “Geometric Measure Theory”, Grundlehren math. Wissen. 153, Springer, Berlin, 1969. | MR | Zbl
,[10] Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974), 351-407. | MR | Zbl
,[11] Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284-305. | Numdam | MR | Zbl
,[12] On sequences of maps with equibounded energies, Calc. Var. Partial Differential Equations 12 (2001), 213-222. | MR | Zbl
and ,[13] Variational problems for maps of bounded variations with values in , Calc. Var. 1 (1993), 87-121. | MR | Zbl
, and ,[14] “Cartesian Currents in the Calculus of Variations”, I, II. Ergebnisse Math. Grenzgebiete (III Ser), 37, 38, Springer, Berlin, 1998. | MR | Zbl
, and ,[15] Weak and strong density results for the Dirichlet energy, J. Eur. Math. Soc. 6 (2004), 95-117. | MR | Zbl
and ,[16] The Dirichlet energy of mappings from into a manifold: density results and gap phenomenon, Calc. Var. Partial Differential Equations 20 (2004), 367-397. | MR | Zbl
and ,[17] On sequences of maps into a manifold with equibounded -energies, J. Funct. Anal. 225 (2005), 94-146. | MR | Zbl
and ,[18] Solving the Plateau's problem for hypersurfaces without the compactness theorem for integral currents, In: “Geometric Measure Theory and the Calculus of Variations”, W. K. Allard and F. J. Almgren (eds.), Proc. Symp. Pure Math. 44. Amer. Math. Soc., Providence, 1996, 255-295. | MR | Zbl
and ,[19] The space : minimal connections and optimal liftings Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 283-302. | Numdam | MR | Zbl
,[20] Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal. 13 (2001), 223-257. | MR | Zbl
and , and K Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), 253-268. |[22] “Lectures on geometric measure theory”, Proc. C.M.A., Vol. 3, Australian Natl. Univ., Canberra, 1983. | MR | Zbl
,[23] Rectifiability of flat chains, Ann. of Math. (2) 150 (1999), 165-184. | MR | Zbl
,