Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity (errata)
ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 413-417.

This errata corrects one error in the 2004 version of this paper [Mennucci, ESAIM: COCV 10 (2004) 426-451].

DOI : 10.1051/cocv:2007019
Classification : 49L25, 53C22, 53C60
Mots-clés : Hamilton-Jacobi equations, cutlocus, conjugate points
@article{COCV_2007__13_2_413_0,
     author = {Mennucci, Andrea C. G.},
     title = {Regularity and variationality of solutions to {Hamilton-Jacobi} equations. {Part} {I} : regularity (errata)},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {413--417},
     publisher = {EDP-Sciences},
     volume = {13},
     number = {2},
     year = {2007},
     doi = {10.1051/cocv:2007019},
     mrnumber = {2306644},
     zbl = {1121.49028},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2007019/}
}
TY  - JOUR
AU  - Mennucci, Andrea C. G.
TI  - Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity (errata)
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2007
SP  - 413
EP  - 417
VL  - 13
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2007019/
DO  - 10.1051/cocv:2007019
LA  - en
ID  - COCV_2007__13_2_413_0
ER  - 
%0 Journal Article
%A Mennucci, Andrea C. G.
%T Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity (errata)
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2007
%P 413-417
%V 13
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2007019/
%R 10.1051/cocv:2007019
%G en
%F COCV_2007__13_2_413_0
Mennucci, Andrea C. G. Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity (errata). ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 413-417. doi : 10.1051/cocv:2007019. http://www.numdam.org/articles/10.1051/cocv:2007019/

[1] P. Cannarsa, A. Mennucci and C. Sinestrari, Regularity results for solutions of a class of Hamilton-Jacobi equations. Arch. Rat. Mech. 140 (1997) 197-223 (or preprint 13-95, Dip. Mat., Univ. Tor Vergata, Roma). | Zbl

[2] H. Federer, Geometric measure theory. Springer-Verlag (1969). | MR | Zbl

[3] G.J. Galloway, P.T. Chruściel, J.H.G. Fu and R. Howard, On fine differentiability properties of horizons and applications to Riemannian geometry. J. Geom. Phys. 41 (2002) 1-12. | Zbl

[4] J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus. Trans. AMS 353 (2000) 21-40. | Zbl

[5] Y.Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Comm. Pure Appl. Math. 58 (2005) 85-146 (first received as a personal communication in June 2003). | Zbl

[6] C. Mantegazza and A.C. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47 (2002) 1-25. | Zbl

[7] A.C.G. Mennucci, Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: regularity. ESAIM: COCV 10 (2004) 426-451. | Numdam | Zbl

Cité par Sources :