We formulate an Hamilton-Jacobi partial differential equation
Mots-clés : Hamilton-Jacobi equations, conjugate points
@article{COCV_2004__10_3_426_0, author = {Mennucci, Andrea C. G.}, title = {Regularity and variationality of solutions to {Hamilton-Jacobi} equations. {Part} {I} : regularity}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {426--451}, publisher = {EDP-Sciences}, volume = {10}, number = {3}, year = {2004}, doi = {10.1051/cocv:2004014}, mrnumber = {2084331}, zbl = {1085.49040}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2004014/} }
TY - JOUR AU - Mennucci, Andrea C. G. TI - Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 426 EP - 451 VL - 10 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2004014/ DO - 10.1051/cocv:2004014 LA - en ID - COCV_2004__10_3_426_0 ER -
%0 Journal Article %A Mennucci, Andrea C. G. %T Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 426-451 %V 10 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2004014/ %R 10.1051/cocv:2004014 %G en %F COCV_2004__10_3_426_0
Mennucci, Andrea C. G. Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 3, pp. 426-451. doi : 10.1051/cocv:2004014. http://www.numdam.org/articles/10.1051/cocv:2004014/
[1] On the structure of singular sets of convex functions. Calc. Var. Partial Differ. Equ. 2 (1994) 17-27. | MR | Zbl
,[2] A primer of nonlinear analysis. Cambridge University Press, Cambridge (1993). | MR | Zbl
and ,[3] On the propagation of singularities of semi-convex functions. Ann. Scuola. Norm. Sup. Pisa XX (1993) 597-616. | EuDML | Numdam | MR | Zbl
, and ,[4] Regularity results for solutions of a class of Hamilton-Jacobi equations. Arch. Ration. Mech. Anal. 140 (1997) 197-223 (or, preprint 13-95 Dip. Mat. Univ Tor Vergata, Roma). | MR | Zbl
, and ,[5] Methods of Mathematical Physics, volume II. Interscience, New York (1963). | MR | Zbl
and ,[6] Zbl
and , Eds., Advances in System Theory. Kluwer Academic Publishers Boston, October (1999). |[7] Partial Differential Equations. A.M.S. Grad. Stud. Math. 19 (2002).
,[8] Geometric measure theory. Springer-Verlag, Berlin (1969). | MR | Zbl
,[9] Controlled Markov processes and viscosity solutions. Springer-Verlag, Berlin (1993). | MR | Zbl
and ,[10] Ordinary Differential Equations. Wiley, New York (1964). | MR | Zbl
,[11] The Lipschitz continuity of the distance function to the cut locus. Trans. Amer. Math. Soc. 353 (2000) 21-40. | MR | Zbl
and ,[12] The cauchy problem in the large for certain non-linear first order differential equations. Soviet Math. Dockl. 1 (1960) 474-475. | MR | Zbl
,[13] Yan yan Li and L. Nirenberg, The distance function to the boundary, finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations (2003) (preprint). | MR | Zbl
[14] Generalized Solutions of Hamilton-Jacobi Equations. Pitman, Boston (1982). | MR | Zbl
,[15] Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47 (2003) 1-25. | MR | Zbl
and ,[16] Introduction to Symplectic Topology. Oxford Mathematical Monograph, Oxford University Press, Clarendon Press, Oxford (1995). | MR | Zbl
and ,[17] Regularity and variationality of solutions to Hamilton-Jacobi equations. Part ii: variationality, existence, uniqueness (in preparation).
,[18] Semiconcave functions, Hamilton-Jacobi equations and optimal control problems, in Progress in Nonlinear Differential Equations and Their Applications, Vol. 58, Birkhauser Boston (2004). | MR | Zbl
and ,[19] On fine differentiability properties of horizons and applications to Riemannian geometry (to appear). | MR | Zbl
, , and ,[20] Rectifiability results for singular and conjugate points of optimal exit time problems. J. Math. Anal. Appl. 270 (2002) 681-708. | MR | Zbl
,[21] Lectures on Geometric Measure Theory, Vol. 3 of Proc. Center for Mathematical Analysis. Australian National University, Canberra (1983). | MR | Zbl
,[22] -spreads of sets in metric spaces and critical values of smooth functions.
,[23] The geometry of critical and near-critical values of differential mappings. Math. Ann. 4 (1983) 495-515. | MR | Zbl
,[24] Metric properties of semialgebraic sets and mappings and their applications in smooth analysis, in Géométrie algébrique et applications, III (la Rábida, 1984), Herman, Paris (1987) 165-183. | MR | Zbl
,Cité par Sources :