We obtain an existence-uniqueness result for a second order Neumann boundary value problem including cases where the nonlinearity possibly crosses several points of resonance. Optimal and Schauder fixed points methods are used to prove this kind of results.
Mots-clés : second order Newmann boundary condition, resonance, Pontryagin's maximum principle
@article{COCV_2006__12_3_398_0, author = {L\'opez, Gin\'es and Montero-S\'anchez, Juan-Aurelio}, title = {Neumann boundary value problems across resonance}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {398--408}, publisher = {EDP-Sciences}, volume = {12}, number = {3}, year = {2006}, doi = {10.1051/cocv:2006009}, mrnumber = {2224820}, zbl = {1123.34011}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2006009/} }
TY - JOUR AU - López, Ginés AU - Montero-Sánchez, Juan-Aurelio TI - Neumann boundary value problems across resonance JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 398 EP - 408 VL - 12 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2006009/ DO - 10.1051/cocv:2006009 LA - en ID - COCV_2006__12_3_398_0 ER -
%0 Journal Article %A López, Ginés %A Montero-Sánchez, Juan-Aurelio %T Neumann boundary value problems across resonance %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 398-408 %V 12 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2006009/ %R 10.1051/cocv:2006009 %G en %F COCV_2006__12_3_398_0
López, Ginés; Montero-Sánchez, Juan-Aurelio. Neumann boundary value problems across resonance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 398-408. doi : 10.1051/cocv:2006009. http://www.numdam.org/articles/10.1051/cocv:2006009/
[1] Introduction to Banach Spaces and their Geometry. North Holland, New York. Mathematics Studies 68 (1982). | MR | Zbl
,[2] On an oscillation criterion of Liapunoff. Amer. J. Math. 73 (1951) 885-890. | Zbl
and ,[3] On a nonlinear two-point boundary value problem. J. Math. Anal. Appl. 26 (1969) 20-27. | Zbl
and ,[4] Neumann boundary value problems for second order ordinary differential equations across resonance. SIAM J. Control Optim. 33 (1995) 1312-11325. | Zbl
and ,[5] Variational methods and semi-linear elliptic equations. Arch. Rational Mech. Anal. 95 (1986) 269-277. | Zbl
, and ,[6] Optimal Control and the Calculus of Variations. Oxford University Press, New York (1993). | MR | Zbl
,[7] Ordinary differential equations. Springer-Verlag, New York, Graduate Texts in Math. 182 (1998). | MR | Zbl
,Cité par Sources :