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Abstract. We obtain an existence-uniqueness result for a second order Neumann boundary value
problem including cases where the nonlinearity possibly crosses several points of resonance. Optimal
and Schauder fixed points methods are used to prove this kind of results.
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1. Introduction

The aim of this work is to give an existence and uniqueness result for elliptic boundary value problem of
second order in resonance, that is, our hypotheses allow that the nonlinearity crosses several eigenvalues of the
associated eigenvalue problem. Under suitable conditions, which include the regularity of the function f , the
positivity of the function ∂f

∂x and a uniform upper bound for
∫ π

0
∂
∂xf(t, x)dt, the problem

−x′′(t) − α(t)x′(t) = f(t, x(t)), in [0, π]
A = x′(0); B = x′(π)

}
(1.1)

has a unique solution (Th. 14), where α : [0, π] → IR is a continuous function.
It is well known that in order to study the solutions of a boundary value problem for a second order operator, it

is convenient to consider the interaction between the nonlinearity, f(t, x), and the spectrum of the corresponding
operator. See [2, 3, 5].

Our motivation was a paper written by Huaizhong and Yong, [4], in which, for α ≡ 0, the Theorem 14
below is obtained. For it, they use Pontryagin’s maximum principle and the explicit expression of solutions for
the associated linear problem to (1.1). When α �= 0 is a general continuous function, the explicit expression
of solutions for the associated linear problem is unknown and so, the use of Pontryagin’s maximum principle
becomes difficult to handle, in order to obtain the main result (Th. 14), which is obtained in a different way.

In Section 2, we consider the linear problem associated with problem (1.1)

−x′′ − α(t)x′ = β(t)x, t ∈ [0, π]
x′(0) = x′(π) = 0

}
(1.2)

where β is a nonnegative, bounded and measurable function.
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Now we define an optimal control problem for the above linear boundary value problem. We prove the
existence of the optimal control and, after doing a qualitative study of the optimal solutions of (1.2), we obtain
a lower bound for the minimum value of the functional cost. Moreover, we apply Pontryagin’s maximum principle
to describe the optimal control. Finally, in Section 3, applying the results of Section 2 and Schauder fixed-point
theorem, we obtain our main result (Th. 14). Roughly speaking, we show that even though the function f
crosses some eigenvalues, an additional “energy” is necessary to get several solutions for the problem (1.1).

2. Linear problem

We consider the linear boundary problem

−x′′ − α(t)x′ = β(t)x, t ∈ [0, π]
x′(0) = x′(π) = 0

}
where α is a continuous function on [0, π] with β ∈ L∞[0, π] and β(t) ≥ 0 a.e. t ∈ [0, π].

We start by studying the spectral structure of the associated eigenvalue problem.

−x′′ − α(t)x′ = λx, t ∈ [0, π]
x′(0) = x′(π) = 0.

}
(2.3)

Lemma 1. The eigenvalues of the problem (2.3) are a sequence of real numbers λ0 < λ1 < · · · < λn < · · · ,
where λ0 = 0, lim λn = +∞ and all of them are simple.

Proof. Multiplying equation (2.3) by e
∫ t
0 α(s) ds we obtain the equivalent problem

−(e
∫ t
0 α(s) dsx′)′ = λe

∫ t
0 α(s) dsx, t ∈ [0, π]

x′(0) = x′(π) = 0.

}
(2.4)

From [7] Theorem 27.II, we have that the eigenvalue problem (2.4), and so (2.3), has infinitely many simple real
eigenvalues λ0 < λ1 < · · · < λn < · · · and no other eigenvalues.

Since 0 is clearly an eigenvalue of (2.3), it remains only to see that λn can’t be negative for all n ∈ IINI.
Assume that λn < 0 for some n. Now, by integrating in (2.4) we obtain

x′(t) = −e−
∫ t
0 α(s) ds

∫ t

0

e
∫ s
0 α(τ) dτλnx(s) ds, ∀t ∈ [0, π] (2.5)

where x ∈ C1[0, π] is the solution of (2.3) with λ = λn satisfying x(0) = 1.
Since λn < 0 and x(0) > 0, one can deduce from (2.5) that x′(t) > 0, ∀t ∈ (0, π). Then x(t) > 0, ∀t ∈ [0, π].

Doing t = π in (2.5) one has that
∫ π

0

e
∫

s
0 α(τ) dτλnx(s) ds = 0 which is a contradiction. �	

Choose a suitable admissible set ΩB as follows:

ΩB = {β ∈ L∞[0, π] \ {0} : 0 ≤ β(t) ≤ B, a.e. t ∈ [0, π] and
(1.2) has nontrivial solution for β = β(t)},

where λ1 ≤ B. Our control problem will be to find a function β∗ ∈ ΩB such that β∗(t) minimizes the functional
J defined by

J(β) =
∫ π

0

β(t) dt, ∀β ∈ ΩB,
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that is,
J(β∗) = min

ΩB

J(β).

In order to prove the existence of a minimum in ΩB for J we note that every solution of (1.2), for β ∈ ΩB has
a zero.

Lemma 2. If β ∈ ΩB and xβ is a solution of (1.2) for that β, then xβ has a zero.

Proof.
Arguing as in Lemma 1, we have

x′(π) = −e−
∫ π
0 α(s) ds

∫ π

0

e
∫ s
0 α(τ) dτβ(s)x(s) ds = 0,

and we conclude the result. �	

Lemma 3. ΩB is a weakly compact set of L1(0, π).

Proof. Since the identity map i : L2(0, π) → L1(0, π) is continuous for the weak topologies and ΩB is bounded,
it is enough to see that ΩB is a weakly closed subset of L2(0, π).

Pick {βn} ⊂ ΩB a sequence and for each n, take xn a nontrivial solution of problem (1.2) for β = βn. By
linearity we can assume that

‖xn‖∞ + ‖x′
n‖∞ = 1, ∀n ∈ IINI.

Consequently, the sequences {xn} and {x′
n} are uniformly bounded and so {xn} is a equicontinuous sequence.

From the equation (1.2) for x = xn we deduce that {x′′
n} is a uniformly essentially bounded sequence. Hence,

{x′
n} is also equicontinuous. By the Ascoli-Arzelà theorem, passing to a subsequence if necessary, we can assume

that
{xn} → x0, {x′

n} → y0 (n → ∞)

uniformly on [0, π] for suitable x0, y0 continuous functions on [0, π]. Now, it is clear that y0 = x′
0 and ‖x0‖∞ +

‖x′
0‖∞ = 1, so x0 �≡ 0
From the boundness of the sequence {βn} in L2(0, π), we can assume, passing to a subsequence if necessary,

that {βn} converges to β0 ∈ L2(0, π) for the weakly topology. Passing to the limit in the equation (1.2) for
x = xn and β = βn we can deduce that x0 is a solution of the problem (1.2) for β = β0, taking into account
that {xn} converges “strongly” to x0 and {βn} goes weakly to β0, both in L2(0, π).

In order to prove that β0 ∈ ΩB, it remains only to see that β0 �≡ 0.
By Lemma 2, for each n there is tn ∈ (0, π) such that xn(tn) = 0. We can assume that tn → t∗ ∈ [0, π]. As

xn → x0 uniformly then x0(t∗) = 0. From the uniqueness for initial value problems for the equation (1.2), we
deduce that t∗ ∈ (0, π), since x′

0(0) = x′
0(π) = 0. Therefore x0 is not a constant function and so β0 �= 0 a.e. in

L2(0, π). Finally, β0 ∈ ΩB. �	

Before proving the existence of minimum in ΩB for J , we recall that a point x of a set C in a vector space
is said to be an extreme point of C, if x is not an interior point of any nontrivial segment contained in C. The
set of all extreme points of C will be denoted by extr(C).

Theorem 4. The functional J attains its minimum at an admisible β0 ∈ ΩB such that

β0 ∈ extr(co(ΩB)) (⇒ β0 ∈ extr(ΩB)).

Moreover, min
ΩB

J = min
co(ΩB)

J .
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Proof. Observe that ΩB �= ∅ because the eigenfunction associated to the eigenvalues λ1 is a nontrivial solution
of problem (1.2) for β(t) ≡ λ1 and therefore β(t) ≡ λ1 belongs to ΩB. Moreover, the closed convex hull
of ΩB , co(ΩB), is weakly compact in L1(0, π), applying Lemma 3. We can see the functional J defined on
co(ΩB), namely J̃ . Now, by Bauer’s Theorem (see for instance [1, Th. V.1]), J̃ attains its minimum on
β0 ∈ extr(co(ΩB)). By [1, Prop. V.4], we obtain that in fact β0 ∈ extr(ΩB). Then J(β0) = J̃(β0) is the
minimum value of J on ΩB. �	

The following lemma exhibits some qualitative properties for the solutions of the problem (1.2) when β is a
point of minimum for J .

Lemma 5. Let β1 be an element in ΩB. Assume that the problem (1.2) for β = β1 has a nontrivial solution
x1 whose derivative has a zero in (0, π). Then there is β2 in ΩB such that every nontrivial solution, x2 of

problem (1.2) for β = β2 satisfies x′
2(t) �= 0 in (0, π) and

∫ π

0

β2(t) dt <

∫ π

0

β1(t) dt.

Proof. Let t1 ∈ (0, π) be a zero of x′
1. By Lemma 2 there is t2 ∈ (0, π) such that x1(t2) = 0. The uniqueness

of initial value problem for equation (1.2) gives x′
1(t2) �= 0. It is clear that there is 0 ≤ a < b ≤ π such that

t2 ∈ (a, b), x′
1(a) = x′

1(b) = 0 and x′
1(t) �= 0, ∀t ∈ (a, b). Clearly 0 < b − a < π.

Consider F (t) =
∫ t

0

ds

1 − Ke
∫ s
0 α(τ) dτ

+ a, t ∈ (0, π) where K < 0 is chosen such that the equality F (π) = b

holds (this is possible by virtue of the continuity of F with respect to the parameter K). Note that F defined
above is the unique solution of

f ′′ + α(t)f ′ = α(t)(f ′)2

f(0) = a, f(π) = b.

}
Now, define x2(t) = x1(F (t)), ∀t ∈ [0, π]. One can check that x2 is a solution of problem (1.2) for β =
F ′(t)2β1(F (t)). Moreover, x′

2(t) = x′
1(F (t))F ′(t) �= 0, for t ∈ (0, π). Taking β2 = F ′(t)2β1(F (t)) one has

β2 ∈ ΩB, since

F ′(t) =
1

1 − Ke
∫

t
0 α(τ) dτ

< 1, ∀t ∈ (0, π).

Consequently,∫ π

0

β2 =
∫ π

0

F ′(t)2β1(F (t)) dt <

∫ π

0

F ′(t)β1(F (t)) dt =
∫ b

a

β1(t) dt ≤
∫ π

0

β1(t) dt. �

Corollary 6. If β is a minimum for J , then every nontrivial solution x(t) of the problem (1.2) satisfies x′(t) �= 0
for all t ∈ (0, π). In particular, x has exactly one zero in [0, π].

Note that the minimum of the functional J is strictly positive, so we will estimate this minimum and for this
we need to fix some notation.

In the subsequent lemmas we will be in the following setting

(H)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
• β∗ is a minimum of J (Th. 4),
• x1, x2 are two solutions (so, linearly dependent) of the problem (1.2) with
x1(0) = 1, x2(π) = 1, for β = β∗, and
• t∗ ∈ (0, π) is the unique point in (0, π) satisfying x1(t∗) = 0, x2(t∗) = 0
(Cor. 6).

Lemma 7. x1(π)x2(0) = 1.

Proof. It is clear that there is c ∈ IR \ {0} such that x1 = c x2. Hence, x1(π) = c x2(π) = c, and then
1 = x1(0) = c x2(0) = x1(π)x2(0). �	
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Lemma 8. i) ∫ t∗

0

β∗(s) ds >
1 − x1(π)

π
e−2π‖α‖∞ .

ii) ∫ π

t∗
β∗(s) ds >

1 − x2(0)
π

e−2π‖α‖∞ .

Proof.
i) Integrating in (2.5) for x = x1 and λn = β∗ we deduce

1 − x1(π) =
∫ π

0

e−
∫

t
0 α(τ) dτ

∫ t

0

e
∫

s
0 α(τ) dτβ∗(s)x1(s) ds dt

<

∫ π

0

et‖α‖∞
∫ t∗

0

es‖α‖∞β∗(s) ds dt ≤ πe2π‖α‖∞
∫ t∗

0

β∗(s) ds.

The second inequality is trivial. For the first inequality we used that the function x1 is strictly positive in [0, t∗),
strictly negative in (t∗, π] and x1(t) ≤ 1 in [0, π] (by (H) and Cor. 6).

ii) The proof is similar to the proof of i), by using that x2 is strictly negative in [0, t∗), strictly positive in (t∗, π]
and x2(t) ≤ 1 in [0, π] (by (H) and Cor. 6). �	

Now, we present the main tool of the section.

Theorem 9.

min
ΩB

J >
4
π

e−2π‖α‖∞ .

Proof. From the previous lemma we obtain J(β∗) > e−2π‖α‖∞
π (2 − x1(π) − x2(0)). Put a = −x1(π), b = −x2(0).

From Corollary 6 and Lemma 7 it is clear that a, b > 0 and ab = 1, since x1(0) = 1 and x2(π) = 1. Then we
conclude a + b ≥ 2 and so the proof. �	

Remark. Observe that with the same computations as in Lemma 8, we obtain a better bound on the minΩB J .
Specifically,

min
ΩB

J >
4

‖e
∫

t
0 α‖∞

∫ π

0 e−
∫

t
0 α dt

·

However, we will use Theorem 9 for simplicity reasons.

Note that the estimation in Theorem 9 is independent of B, so as a consequence we obtain the following

Corollary 10. Let Ω = {β ∈ L∞(0, π) \ {0} : β(t) ≥ 0 a.e. t ∈ [0, π] and the problem (1.2) has nontrivial
solution}. Then,

∫ π

0
β(t) dt > 4

π e−2π‖α‖∞ for each β ∈ Ω.

The above corollary is used now to obtain uniqueness conditions on the problem (1.2), which generalize [4],
Theorem 3.
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Corollary 11. Let β ∈ L∞(0, π) \ {0} such that β(t) ≥ 0 a.e. t ∈ [0, π] and
∫ π

0
β(t) dt ≤ 4

π e−2π‖α‖∞. Then for
each g ∈ L1(0, π), R, S ∈ IR the boundary value problem

x′′ + α(t)x′ + β(t)x = g(t), t ∈ [0, π]
x′(0) = R, x′(π) = S,

}
(2.6)

has a unique solution.

Proof. From Corollary 10 the problem (2.6) has at most one solution. Since the equation is linear, the uniqueness
implies the existence. �	

In order to complete the study of our control problem, we describe now the functions β ∈ ΩB where J attains
its minimum on ΩB for B > λ1.

Theorem 12. Assume α differentiable and let B > λ1. Then, there is β∗ ∈ ΩB where J attains its minimum
on ΩB, with the following form:

β∗(t) =

⎧⎨⎩
B, 0 ≤ t ≤ t1
0, t1 < t < t2
B, t2 ≤ t ≤ π,

with t1 < t2 ∈ (0, π) satisfying the equation

0 = exp
{
− ∫ t2

0 α
}

y(t2)x′(t1)

− exp
{
− ∫ t1

0
α
}

x(t1)y′(t2) − x′(t1)y′(t2)
∫ t2

t1
exp

{− ∫ s

0
α
}

ds
(2.7)

where {x, y} are the solutions of the equation (1.2) for β = B satisfying x(0) = y(π) = 1 and x′(0) = y′(π) = 0.

Proof. Choose B > λ1 and take β∗ ∈ ΩB such that J attains its minimum on ΩB. Let z0 be the solution of
problem (1.2) for β = β∗ satisfying z′0(0) = z′0(π) = 0 and z0(0) = 1. Setting w0 = z′0 we have that (z0, w0) is a
solution of the problem (

z′

w′

)
=

(
0 1

−β∗ −α

) (
z
w

)
(2.8)

with conditions z(0) = 1 and w(0) = 0. By Theorem 4 and Pontryagin’s Maximum Principle (see for instance
[6], Th. 4.1), we have ∃(λ, µ) ∈ IR2 \ {(0, 0)}, with λ ≥ 0, and absolutely continuous functions P, Q : [0, π] → IR
solutions of the following problem (

P ′

Q′

)
= −

(
0 −β∗

1 −α

) (
P
Q

)
(2.9)

with conditions P (π) = 0 and Q(π) = µ.
Furthermore, 〈(

P
Q

)
,

(
0 1

−β∗ −α

) (
z0

w0

)〉
+ λβ∗ = (2.10)

min
φ∈[0,B]

〈(
P
Q

)
,

(
0 1
−φ −α

) (
z0

w0

)〉
+ λφ a.e. [0, π]. (2.11)

Equivalently,
(λ − Qz0)β∗ = min

φ∈[0,B]
(λ − Qz0)φ a.e. [0, π]. (2.12)

From (2.9) we deduce that
−Q′′ + (αQ)′ = β∗Q

Q(π) = µ, Q′(π) = α(π)µ.
(2.13)
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Observe that q(t) = e
∫

t
0 αz0(t) satisfies −q′′+(αq)′ = β∗q and q(π) = e

∫
π
0 αz0(π), q′(π) = α(π)e

∫
π
0 αz0(π). Then,

Q(t) =
µe−

∫
π
0 α

z0(π)
e
∫ t
0 αz0(t).

If µ = 0 holds then λ > 0 and Q ≡ 0. Now from (2.12) we obtain β∗ ≡ 0 /∈ ΩB. So, µ �= 0.
If λ = 0 holds then from (2.12) we conclude that β∗ ≡ 0 /∈ ΩB or β∗ ≡ B (not possible because B > λ1),

since the function Qz0 does not change sing in [0, π]. Thus, λ > 0.
Again from (2.12)

β∗(t) =

⎧⎨⎩ 0, if µe−
∫ π
0 α

z0(π) e
∫ t
0 αz2

0(t) < λ

B, if µe−
∫ π
0 α

z0(π) e
∫

t
0 αz2

0(t) > λ.
(2.14)

From Corollary 6, z0 is strictly monotone, then the number of elements in the set A = {t ∈ [0, π] :
µe−

∫ π
0 α

z0(π) e
∫ t
0 αz2

0(t) = λ} is either zero, one or two. The cases zero and one give β∗ ≡ 0 in an interval I

containing 0 or π and so, z0 is constant on I, which is a contradiction with Corollary 6. In the case that A has
two elements, the same argument proves that the unique possibility for β∗ is

β∗(t) =

⎧⎨⎩
B if t ∈ (0, t1)
0 if t ∈ (t1, t2)
B if t ∈ (t2, π).

Take {x, y} the solutions of (1.2) with β = B satisfying x(0) = 1, x′(0) = 0, y(π) = 1 and y′(π) = 0. Let β∗ be
a function in ΩB where J attains its minimum value on ΩB. Then, there are some t1, t2 ∈ (0, π) such that

β∗(t) =

⎧⎨⎩
B if t ∈ (0, t1)
0 if t ∈ (t1, t2)
B if t ∈ (t2, π)

and hence, a nontrivial solution xβ∗ of (1.2) for β = β∗ can be written, when B is not an eigenvalue of (2.3), in
the way

xβ∗(t) =

⎧⎨⎩
ax(t) + by(t), if t ∈ (0, t1)
c + d

∫ t

0 exp{− ∫ s

0 α}ds, if t ∈ (t1, t2)
ex(t) + fy(t), if t ∈ (t2, π)

(2.15)

for suitable a, b, c, d, e, f ∈ IR, since {x, y} is a fundamental system of (1.2) with β = β∗. Now, we impose
the continuity and differentiability on xβ∗ in t1 and t2 joint to x′

β∗(0) = x′
β∗(π) = 0 and we obtain that the

following system

ax′(0) + by′(0) = 0

ax(t1) + by(t1) − c − d

∫ t1

0

exp
{
−

∫ s

0

α

}
ds = 0

ax′(t1) + by′(t1) − d exp
{
−

∫ t1

0

α

}
= 0

ex(t2) + fy(t2) − c − d

∫ t2

0

exp
{
−

∫ s

0

α

}
ds = 0

ex′(t2) + fy′(t2) − d exp
{
−

∫ t2

0

α

}
= 0

ex′(π) + fy′(π) = 0 (2.16)
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has a nontrivial solution (a, b, c, d, e, f). Equivalently, the determinant D of the following matrix must be 0:

0 = D = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′(0) y′(0) 0 0 0 0

x(t1) y(t1) −1 − ∫ t1
0 exp{− ∫ s

0 α}ds 0 0

x′(t1) y′(t1) 0 − exp{− ∫ t1
0 α} 0 0

0 0 −1 − ∫ t2
0

exp{− ∫ s

0
α}ds x(t2) y(t2)

0 0 0 − exp{− ∫ t2
0

α} x′(t2) y′(t2)

0 0 0 0 x′(π) y′(π)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Computing the determinant D, one has

0 = exp
{
−

∫ t2

0

α

}
y(t2)x′(t1) − exp

{
−

∫ t1

0

α

}
x(t1)y′(t2)

−
(∫ t2

0

exp
{
−

∫ s

0

α

}
ds −

∫ t1

0

exp
{
−

∫ s

0

α

}
ds

)
x′(t1)y′(t2). (2.17)

If B is an eigenvalue of (2.3), then the above equation also holds, setting x = y. �	

Now, we finish this section by showing, as consequence, an improvement of Corollary 11, which generalizes [4],
Theorem 2, giving a bound depending of B.

Corollary 13. Fix B > λ1. Assume that α is differentiable and let β ∈ L∞(0, π) \ {0} such that 0 ≤ β(t) ≤ B
a.e. in [0, π]. Let {x, y} solutions of equation (1.2) for β = B satisfying x(0) = y(π) = 1 and x′(0) = y′(π) = 0.
If

∫ π

0
β(t)dt ≤ B(t1 + π − t2), where 0 < t1 < t2 < π is a solution of the algebraic equation

0 = exp
{
−

∫ t2

0

α

}
y(t2)x′(t1) − exp

{
−

∫ t1

0

α

}
x(t1)y′(t2)

−
(∫ t2

0

exp
{
−

∫ r

0

α

}
dr −

∫ t1

0

exp
{
−

∫ r

0

α

}
dr

)
x′(t1)y′(t2) (2.18)

which minimizes the expression t1 − t2, then for each f ∈ L1(0, π), C, D ∈ IR the boundary value problem

x′′ + α(t)x′ + β(t)x = f(t), t ∈ [0, π]
x′(0) = C, x′(π) = D,

}
(2.19)

has a unique solution.

3. Nonlinear problem

The results of the previous section will become essential to get the main theorem concerning the existence
and uniqueness of solution for the following nonlinear boundary value problem.

−x′′ − α(t)x′ = f(t, x), t ∈ [0, π]

x′(0) = A, x′(π) = B,

}
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where A, B ∈ IR, α : [0, π] → IR is a continuous function and the nonlinearity f : [0, π] × IR → IR satisfies that
f, fx are continuous on [0, π] × IR.

Theorem 14. Assume that the following requirements are fulfilled:

i) 0 ≤ fx(t, x) ≤ β(t) on [0, π] × IR, where β ∈ L∞(0, π) and satisfies
∫ π

0
β(t) dt ≤ 4 exp{−2π‖α‖∞}

π .
ii) For each x ∈ C[0, π] one has fx(t, x(t)) �= 0 a.e. on [0, π] and∫ π

0 exp{∫ s

0 α(τ) dτ}f(s, 0) ds = 0.
Then, the problem (1.1) has a unique solution.

Proof. We first prove the uniqueness. Without loss of generality we can assume that A = B = 0. Pick x1, x2

solutions of the problem (1.1), then x(t) = x1(t) − x2(t) is a solution of the problem

−x′′ − α(t)x′ = x

∫ 1

0

fx(t, x2 + θx) dθ, t ∈ [0, π]

x′(0) = x′(π) = 0

⎫⎬⎭ . (3.20)

Take β0(t) =
∫ 1

0
fx(t, x2 + θx) dθ. Now, x is a solution of the problem (1.2) for β = β0. From our requirements

β0 ∈ L∞(0, π), 0 ≤ β0(t) a.e. on [0, π] and
∫ π

0 β0 ≤ 4 exp{−2π‖α‖∞}
π . Then, applying Corollary 10, x ≡ 0.

The existence of solution will be obtained by an argument of Schauder fix point type. To do it, we write the
nonlinear problem (1.1) in the equivalent form

−x′′ − α(t)x′ = b(t, x)x + f(t, 0), t ∈ [0, π]

x′(0) = x′(π) = 0

}
(3.21)

where b(t, x) =
∫ 1

0 fx(t, θx) dθ. Let X = {x ∈ C1[0, π] : x′(0) = x′(π) = 0} provided with the norm ‖x‖X =
sup[0,π] |x(t)| + sup[0,π] |x′(t)|. It is known that (X, ‖ · ‖X) is a Banach space. Define the operator T : X → X
as x → Tx = yx, where yx is the solution of the linear problem

−y′′ − α(t)y′ = b(t, x)y + f(t, 0), t ∈ [0, π]

y′(0) = y′(π) = 0.

}
(3.22)

Observe that by Corollary 11, the above problem has unique solution and then the operator T is well defined.
Let us see that T is bounded, i.e., ∃M > 0 such that ‖Tx‖X ≤ M for each x ∈ X . Otherwise, there exists a
sequence {xn} ∈ X satisfying ‖yxn‖X → +∞. From the estimate

0 ≤ b(t, xn) ≤ β(t), t ∈ [0, π],

we deduce the existence of a sequence, noted again by {b(t, xn)}, such that {b(t, xn)} ⇀ β1, where the weak
limit function satisfies

0 ≤ β1(t) ≤ β(t), t ∈ [0, π].
We know that yn := yxn is the solution defined by problem (3.22) and then∫ π

0

y′
nh′ −

∫ π

0

αy′
nh =

∫ π

0

b(t, xn)ynh +
∫ π

0

f(t, 0)h, ∀h ∈ H1(0, π), ∀n ∈ IINI. (3.23)

By normalizing zn(t) := yn(t)
‖yn‖X

, we obtain∫ π

0

z′nh′ −
∫ π

0

αz′nh =
∫ π

0

b(t, xn)znh +
1

‖yn‖X

∫ π

0

f(t, 0)h, ∀h ∈ H1(0, π), ∀n ∈ IINI.
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From the previous equation one deduces that z′′n are uniformly bounded, then by an Ascoli-Arzela argument
{zn} → z and {z′n} → z′ uniformly on [0, π]. Taking limit in the corresponding expressions, z �= 0 (recall that
‖z‖X = 1) is a weak solution of∫ π

0

z′h′ −
∫ π

0

αz′h =
∫ π

0

β1zh, ∀h ∈ H1(0, π). (3.24)

Now, if one takes h(t) = e
∫

t
0 α(θ) dθ in (3.23), one obtains

0 =
∫ π

0

e
∫

s
0 α(θ) dθ[b(s, xn)yn + f(s, 0)] ds,

and hence, by hypothesis ii) ∫ π

0

e
∫

s
0 α(θ) dθb(s, xn)yn = 0.

This implies that the function yn has a zero in [0, π] and consequently also z. As z is nontrivial, the zero is
actually in (0, π) and so, z is a nonconstant function. Thus, it follows from (3.24) that β1 is in L∞(0, π)\{0}. On
the other hand, hypothesis i) of theorem and Corollary 11 imply that z ≡ 0 which is a contradiction. Therefore,
the operator T is bounded.

Let us see now that the operator T : X → X is continuous. Take a convergent sequence {xn} → x0 ∈ X .
Then, we need to show that yn → y0 in X , where yn and y0 are the corresponding solutions of problem (3.22)
for x = xn and x = x0, respectively. If the sequence is not convergent, then ∃η > 0 and a subsequence
yn′ /∈ BX(y0, η), ∀n ∈ IINI. On the other hand, we know that y′′

n′ is uniformly bounded in X (taking into account
the equation (3.22) and the boundness of operator T ), thus there exists a new subsequence yn′′ → y, which
converges to some y ∈ X . Passing to the limit in the equation satisfied by yn′′ , the uniqueness of solution
for problem (3.22) implies that y ≡ y0 which is a contradiction. Therefore, yn → y0 and then operator T is
continuous.

To finish the proof, consider T : BX(0, M) ⊂ X → X and arguing as above it is possible to show that T is a
compact operator. Then, Schauder’s fix point theorem does the rest. �	

Remark. Note that the second condition in i) of Theorem 14 is only a L1-norm condition for the function β,
and so, a such β can take any positive value. For example, fix γ > 0 and take β = γ χI , where I is a subinterval
of [0, π] with length small enough, and χI is the characteristic function of I. Therefore, the Theorem 14 include
cases where there is interaction between the nonlinearity fx and any positive eigenvalue of the spectrum. This
interaction also exists from the right in zero. This phenomena is known in the literature as resonant phenomena.

To finish, we show a nonlinear version of Corollary 13 which generalizes [4], Theorem A.

Corollary 15. Fix B > λ1 and suppose α differentiable. Assume that the following requirements are fulfilled:

i) 0 ≤ fx(t, x) ≤ β(t) ≤ B on [0, π] × IR, where β ∈ L∞(0, π) and satisfies
∫ π

0 β(t) dt ≤ B(t1 + π − t2).
Here 0 < t1 < t2 < π are defined as in Corollary 13.

ii) For each x ∈ C[0, π] one has fx(t, x(t)) �= 0 a.e. on [0, π] and∫ π

0 exp{∫ s

0 α(τ) dτ}f(s, 0) ds = 0.

Then, the problem (1.1) has a unique solution.
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