A homogenization problem related to the micromagnetic energy functional is studied. In particular, the existence of the integral representation for the homogenized limit of a family of energies
Mots clés : micromagnetics, homogenization, $\Gamma $-convergence
@article{COCV_2004__10_2_295_0, author = {Pisante, Giovanni}, title = {Homogenization of micromagnetics large bodies}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {295--314}, publisher = {EDP-Sciences}, volume = {10}, number = {2}, year = {2004}, doi = {10.1051/cocv:2004008}, mrnumber = {2083489}, zbl = {1074.35014}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2004008/} }
TY - JOUR AU - Pisante, Giovanni TI - Homogenization of micromagnetics large bodies JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 295 EP - 314 VL - 10 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2004008/ DO - 10.1051/cocv:2004008 LA - en ID - COCV_2004__10_2_295_0 ER -
%0 Journal Article %A Pisante, Giovanni %T Homogenization of micromagnetics large bodies %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 295-314 %V 10 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2004008/ %R 10.1051/cocv:2004008 %G en %F COCV_2004__10_2_295_0
Pisante, Giovanni. Homogenization of micromagnetics large bodies. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 2, pp. 295-314. doi : 10.1051/cocv:2004008. http://www.numdam.org/articles/10.1051/cocv:2004008/
[1] Asymptotic behavior of the Landau-Lifshitz model of ferromagnetism. Appl. Math. Optim. 23 (1991) 171-192. | MR | Zbl
, and ,[2] Local minimizers in micromagnetics and related problems. Calc. Var. Partial Differ. Equ. 14 (2002) 1-27. | MR | Zbl
, and ,[3] Homogenization of multiple integrals. The Clarendon Press Oxford University Press, New York, Oxford Lecture Ser. Math. Appl. 12 (1998). | MR | Zbl
and ,[4] A-quasiconvexity: relaxation and homogenization. ESAIM: COCV 5 (2000) 539-577 (electronic). | Numdam | MR | Zbl
, and ,[5] Jr. Brown and W. Fuller, Micromagnetics. Interscience Publishers, John Wiley & Sons, New York, London (1963).
[6] Direct methods in the calculus of variations. Appl. Math. Sci. 78 (1989). | MR | Zbl
,[7] A-B quasiconvexity and implicit partial differential equations. Calc. Var. Partial Differ. Equ. 14 (2002) 115-149. | MR | Zbl
and ,[8] An introduction to -convergence. Birkhäuser Boston Inc., Boston, MA Prog. Nonlinear Differ. Equ. Appl. 8 (1993). | MR | Zbl
,[9] Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125 (1993) 99-143. | MR | Zbl
,[10] Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica 30 (1995) 591-603. Microstructure and phase transitions in solids (Udine, 1994). | MR | Zbl
, simone, R.V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics. Commun. Pure Appl. Math. 55 (2002) 1408-1460. |[12] A compactness result in the gradient theory of phase transitions. Proc. R. Soc. Edinb. Sect. A 131 (2001) 833-844. | MR | Zbl
, , and ,[13] Relaxation results in micromagnetics. Ricerche Mat. 49 (2000) (suppl.) 269-304. Contributions in honor of the memory of Ennio De Giorgi (Italian). | MR | Zbl
and ,[14] Frustration in ferromagnetic materials. Contin. Mech. Thermodyn. 2 (1990) 215-239. | MR
and ,[15] Teoreticheskaya fizika. Tome VIII. “Nauka”, Moscow, third edition (1992). Elektrodinamika sploshnykh sred. [Electrodynamics of continuous media], with a preface by Lifshits and L.P. Pitaevskiĭ, edited and with a preface by Pitaevskiĭ.
and ,[16] On mathematical tools for studying partial differential equations of continuum physics: -measures and Young measures. Plenum, New York, in Developments in partial differential equations and applications to mathematical physics (Ferrara, 1991), (1992) 201-217. | MR | Zbl
,[17] Beyond Young measures. Meccanica 30 (1995) 505-526. Microstructure and phase transitions in solids (Udine, 1994). | MR | Zbl
,[18] On Landau-Lifshitz' equations for ferromagnetism. Japan J. Appl. Math. 2 (1985) 69-84. | Zbl
,Cité par Sources :