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HOMOGENIZATION OF MICROMAGNETICS LARGE BODIES

Giovanni Pisante1, 2

Abstract. A homogenization problem related to the micromagnetic energy functional is studied. In
particular, the existence of the integral representation for the homogenized limit of a family of energies

Eε(m) =

∫
Ω

φ
(
x,

x

ε
, m(x)

)
dx −

∫
Ω

he(x) · m(x) dx +
1

2

∫
R3

|∇u(x)|2 dx

of a large ferromagnetic body is obtained.
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1. Introduction

In this paper we study a homogenization problem related to the micromagnetic energy functional, precisely
we seek to characterize the energy of a homogeneous ferromagnetic material whose overall response is that of a
periodic material when the size of the periodicity cell tends to zero.

In the Landau and Lifschitz theory of Micromagnetics (see [5,15]), the observable states of a rigid ferromag-
netic material occupying a configuration Ω ⊂ R3, subject to a given external magnetic field he, correspond to
minimizers of the total energy

Eα(m) :=
α2

2

∫
Ω

|∇m|2 dx+
∫

Ω

ϕ(m) dx −
∫

Ω

he ·m dx+
1
2

∫
R3

|∇hm|2 dx.

Here the magnetization m : R3 → R3 represents the mass density of the macroscopic magnetic moment of the
body and is subject to the constraint

|m(x)| = MTχΩ(x) for a.e. x ∈ R3, (1.1)

where T is the temperature and MT is the saturation magnetization, a function of the temperature and of the
specific material, that is zero above the Curie point (see [5, 15]). The condition (1.1) ensures that the body is
always saturated. Here we will assume that the temperature is held fixed, so MT is constant and, as it is usual,
without loss of generality we will fix MT = 1.
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The induced magnetic field hm : R3 → R3 is a function related to m through the Maxwell equations for
magnetostatic

A(m,hm) :=
(

div (m+ hm)
curlhm

)
= 0 in R3. (1.2)

The anisotropy energy density ϕ : S2 → R, where S2 is the unit sphere of R3, is a non negative, even,
continuous function, vanishing only on a finite set of unit vectors, called easy axes.

The four terms in Eα are designated by exchange energy, anisotropy energy, interaction energy and magne-
tostatic energy (for further details on the precise physical meaning of these terms see for example [2, 5, 9, 13]).

The existence of absolute minimizers for Eα has been established by Visintin (see [18]) using the Direct
Method of the Calculus of Variations, and their structure strongly depends on the competition between the
different terms in the energy functional. Some work on local minimizers can be found in [2] (for further related
work we refer to [1, 7, 9–11, 14]). A thorough study of the limiting behavior of minimizers of Eα was carried
out by De Simone in [9,10], where, in particular, he showed that when the volume of the body becomes infinite
then the limit behavior of minimizers of Eα is represented by the minimizers and minimizing sequences of the
functional

E(m) :=
∫

Ω

ϕ(m(x)) dx −
∫

Ω

he(x) ·m(x) dx +
1
2

∫
R3

|∇hm(x)|2 dx. (1.3)

Thus this model is a good approximation for large ferromagnetic bodies.
The functional defined by (1.3), usually called no exchange energy was proposed by James and

Kinderlehrer [14], where they showed that E is no longer semi-continuous with respect to the natural topol-
ogy for m, the L∞(Ω; R3) weak-∗ topology (minimizing sequence may develop oscillations and existence of
minimizers is no longer guaranteed).

The integral representation formula for the relaxed functional of E was obtained by Tartar (see [16, 17])
combining Young measures and H-measures, then, using different arguments by De Simone (see [9]). In this
direction goes also the work of Fonseca and Leoni [13], where they prove a relaxation result for a general class
of functionals which includes E, using an argument based on Young measures and the blow-up method. They
recover as corollaries the results of [9, 16, 17].

Our interest in studying the homogenization of a class of periodic micromagnetic energy functionals starts
from a paper of Braides, Fonseca and Leoni (see [4]) where they give an integral representation formula for
the relaxed energy and of Γ-limits of integral functionals depending on fields which are constrained to satisfy a
system of first order linear partial differential equations with constant rank. Again the main idea is based on
Young measures and on the blow-up method in a general setting of A-quasi-convexity.

Magnetostatic equations (see (1.2)) are a special case of constant rank operators, and so we may try to apply
the general result obtained in [4] to the Maxwell operator to recover the relaxation result as the homogenization
result. However this is not possible, i.e. we cannot apply directly the theory of A-quasi-convexity, since the
general result holds in the case of bounded domains and when no constraints of the type (1.1) are present.

For this reason, in the Magnetostatic framework we must develop an ad hoc procedure and, indeed, this is
what is done in [13] concerning the relaxation. We study the homogenization problem using a similar idea,
looking at it as a Γ-convergence problem (see [3, 8]).

In what follows Ω ⊂ R3 is an open bounded set with Lipschitz boundary, and we define the set M of
admissible magnetizations as

M :=
{
m : R3 → R3 measurable : |m(x)| = χΩ(x) a.e. in R3

} ·
Consider the anisotropy energy density

φ : R3 × R3 × (S2 ∪ {0}) → [0,∞)

such that
0 ≤ φ (x, y,m) ≤ a(x) (1.4)
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with φ(x, y,m) Q-periodic in the second variable, that is φ(x, y + ei,m) = φ(x, y,m) for every i = 1, 2, 3 where
ei are the elements of the canonical basis of R3, and a ∈ L1(R3). Let ε > 0 and consider, for m ∈ M, the family
of no-exchange energy functionals

Eε(m) =
∫

Ω

φ
(
x,
x

ε
,m(x)

)
dx−

∫
Ω

he(x) ·m(x) dx+
1
2

∫
R3

|∇u(x)|2 dx

where u ∈ H1(R3) is the unique solution of Maxwell equation (see [14])

∆u+ div m = 0 in R3.

In this formulation the domain Ω represents the body configuration and the function m its magnetization.
Moreover, we note that in the notation already introduced for the magnetostatic equations we have that
(m,∇u) ∈ KerA where A is the constant rank operator defined by (1.2).

In order to give the definition of Γ-limit for the class of functionals Eε we need to introduce the domain of
definition of the Γ-limit functional, M∗, defined by

M∗ :=
{
m : R3 → R3 measurable : |m(x)| ≤ χΩ(x) a.e. in R3

} ·
Let εn → 0+. We say that the functional E(m) : M∗ → R is the Γ − lim inf [resp. Γ − lim sup] of the sequence
of functionals Eεn with respect to the L∞-weak∗ convergence if for every m ∈ M∗

E(m) := inf
{

lim inf
n→∞

[
resp. lim sup

n→∞

]
Eεn(mn) : mn ∈ M , mn

∗
⇀m inL∞(Ω)

}
,

and we write

E = Γ − lim inf
n→∞ Eεn

[
resp. lim sup

n→∞
Eεn

]
.

We say that the sequence Eεn Γ-converges to E if the Γ − lim inf and Γ − lim sup coincide and we write
E = Γ − lim Eεn .

The functional E is said to be the Γ − lim inf [resp. Γ − lim sup] of the family of functionals Eε with respect
to the L∞-weak∗ convergence if for every sequence εn → 0+ we have that

E = Γ − lim inf
n→∞ Eεn

[
resp. lim sup

n→∞
Eεn

]
and we write

E = Γ − lim inf
ε→0

Eε

[
resp. lim sup

ε→0
Eε

]
.

Finally, we say that E is the Γ-limit of the family Eε, and we write

E = Γ − lim
ε→0

Eε,

if Γ − lim inf and Γ − lim sup coincide.
The main result of the paper is given by the following theorem:

Theorem 1.1. If the anisotropy energy φ does not depend on x, then the Γ-limit Ehom of Eε exists and we have

Ehom(m) =
∫

Ω

fhom(m(x),∇u(x)) dx −
∫

Ω

he(x) ·m(x) dx+
1
2

∫
R3\Ω

|∇u(x)|2 dx
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for all m ∈ M∗, u ∈ H1(Ω) such that div (m+∇u) = 0 in R3. The energy density fhom : B ×R3 → R, with B
the unit ball of R3, is defined by

fhom(µ, h) := inf
Sµ

{
lim inf
k→∞

∫
Q

φ (ky,Mk(y)) +
1
2
|h+ ∇Uk(y)|2 dy

}
where Q is the unit cube and

Sµ :=
{ {Mk, Uk} ∈ L∞(Q,R3) × (H1

0 (Q)
)

: |Mk| = χQ,

Mk
∗
⇀ µ in L∞(Q,R3) , divMk + ∆Uk = 0 in Q

}
·

We give here a simple outline of the proof. We can obtain this result basically in three steps. First we simplify
the functionals Eε, showing that the non local part of the magnetostatic energy

1
2

∫
R3\Ω

|∇u(x)|2 dx

and the interaction energy ∫
Ω

he(x) ·m(x) dx

are continuous perturbations for our Γ-limit (cf. Sect. 2). So we can restrict our study to the simpler class of
functionals

Fε(m) :=
∫

Ω

(
φ
(
x,
x

ε
,m
)

+
1
2
|∇u|2

)
dx.

Then we follow the usual procedure, that is to work with a particular subsequence, Fεk
, with nice properties,

whose existence is ensured by Lemma 3.3, to identify its Γ-limit and then to show that it is the Γ-limit which
we are looking for.

The second step consists in proving the existence of an integral representation for the Γ − lim inf Fεk
, using

the De Giorgi–Letta lemma (see [3] or [8]). More precisely we define a localization of Fεk
as follows

Fεk
(m;D) :=

∫
D

(
φ

(
x,

x

εk
,m

)
+

1
2
|∇u|2

)
dx

and we prove that the Γ − lim inf Fεk
(m, ·), as a set function, is the trace of a Radon measures absolutely

continuous with respect to Lebesgue measure on R3 (cf. Lem. 3.5).
Finally we identify in fhom(m(x),∇u(x)) the Radon-Nikodỳm derivative of Γ − lim inf Fεk

(m, ·) in x when
the anisotropy energy density is autonomous (cf. Prop. 3.7).

Remark 1.2. We should point out that in recovering the homogenization result of Theorem 1.1, the hypothesis
of autonomy of the anisotropy energy density (i.e. that φ does not depend on the position x) is not necessary to
prove the existence of the integral representation of Ehom(m). Nevertheless this assumption makes more clear
and not burned by too many technicalities the computation of the homogeneous energy density fhom.

2. Preliminaries

In this section we first recall some results on the convergence of the solutions of the Maxwell equations, then
we make some remarks on the class of functionals {Eε} in order to simplify the further calculations.

The proofs of the following lemmata can be founded in [13].
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Lemma 2.1. Let m ∈ M∗ and consider a sequence {mk} ⊂ M∗ such that mk
∗
⇀ m in L∞(Ω; R3). Let

u, uk ∈ H1(R3) be such that ∆uk + divmk = ∆u + divm = 0 in R3. Then {∇uk} is 2-equi-integrable over R3,
uk ⇀ u in H1

loc(R
3), uk → u in L∞

loc(R
3), and

lim
k→∞

‖uk − u‖L2∗ (R3) = lim
k→∞

‖∇uk −∇u‖L2(R3\Ω) = 0.

Lemma 2.2. Let D be an open bounded set of R3 and consider a sequence

{(mk, uk)} ⊂ L∞(D;B) × (φk +H1
0 (D))

such that ∆uk + divmk = 0 in D, where φk ∈ H1(D). If φk ⇀ φ in H1(D) and mk
∗
⇀ m in L∞(Ω; R3) then

uk ⇀ u in H1(D), where u ∈ φ +H1
0 (D) is the unique solution of ∆u + divm = 0 in D. Moreover, if {∇φk}

is 2-equi-integrable over D then {∇uk} is also 2-equi-integrable over D. Finally, if in addition we also assume
that mk → m strongly in L2(Ω; R3) then uk → u strongly in H1(D).

Now we recall that by definition of Γ-convergence (see [3, 8]) if F is the Γ-limit of a sequence of functionals
Fj in the metric space (X, d) and G is a functional continuous with respect to the topology of (X, d), then

F +G = Γ − lim
j

(Fj +G)

and G is called continuous perturbation of the Γ-limit.
Using this terminology, we observe that the interaction energy∫

Ω

he(x) ·m(x) dx (2.1)

is, in fact, a continuous perturbation of our Γ− limEε. Indeed we are working in the unit ball B∞ of L∞(Ω; R3)
endowed with the weak∗ topology, which is metrizable, let’s call d∗∞ its metric. Moreover if he ∈ L1

loc(R
3) then

the interaction energy (2.1) is, by definition, continuous with respect to the topology of (B∞, d∗∞), so in order
to calculate the Γ− lim Eε = Γ(d∗∞)− lim Eε it is sufficient to study the Γ(d∗∞)-limit of the family of functionals
Ẽε defined by

Ẽε(m) =
∫

Ω

φ
(
x,
x

ε
,m
)

dx+
∫

R3

1
2
|∇u|2 dx.

We will see in the next section that the first step in the study of the Γ-limit of a class of integral functionals is
the localization. In order to well define this localization we need to rewrite our functionals in a nicer form, since
the non local term (the magnetostatic energy) a priori can give us some troubles. Then we split the functionals
Ẽε in a local part and in a non local part as follows

Ẽε(m) =
∫

Ω

(
φ
(
x,
x

ε
,m
)

+
1
2
|∇u|2

)
dx+

∫
R3\Ω

1
2
|∇u|2 dx.

We observe that by Lemma 2.1 the nonlocal part is continuous with respect to the topology used for the Γ-limit
and if we have mε

∗
⇀ m in L∞(Ω,R3) then {∇uε} is 2-equi-integrable over R3 and ∇uε → ∇u in L2(R3\Ω)

with ∆uε + divmε = ∆u+ divm = 0 in R3.
This remark allows us to restrict our study to the homogenization of the class of local functionals {Fε}

defined by

Fε(m) :=
∫

Ω

(
φ
(
x,
x

ε
,m
)

+
1
2
|∇u|2

)
dx.

Finally we recall a classical result from Γ-convergence that we will need in the sequel (see [3] for a proof).
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Proposition 2.3. Let (X, d) be a separable metric space and let fn : X → [−∞,∞]. Then
(i) there exists an increasing sequence of integers {nk} such that

Γ − lim
k→∞

fnk
(x) exists for all x ∈ X ;

(ii) moreover
f∞ = Γ(d) − lim

n→∞ fn

if and only if for every subsequence {fnk
} there exists a further subsequence {fnkj

} which Γ(d)-converges to f∞.

3. Homogenization

In this section we study the homogenization of the class {Fε}, that is we prove the existence of the Γ −
limε→0 Fε and we give an integral representation for it.

We start introducing a localization of Fε. Let O(Ω) denote the class of all open subsets of Ω. For every
ε > 0, D ∈ O(Ω) and m ∈ M we consider the functional Fε : (M×O(Ω)) → [0,∞) defined by

Fε(m;D) :=
∫

D

(
φ
(
x,
x

ε
,m
)

+
1
2
|∇u|2

)
dx.

Let εk → 0+. We can write, by definition of Fε and of the Γ − lim inf, that for every m ∈ M∗

Γ − lim inf Fεk
(m;D) := inf

{
lim inf
k→∞

∫
D

(
φ

(
x,

x

εk
,mk

)
+

1
2
|∇uk|2

)
dx
}

(3.1)

where the infimum is taken for {mk, uk} ∈ MD with

MD :=
{ {mk, uk} ⊂ M∗ ×H1(R3) : |mk| = 1 in D, mk = m in R3 \D,

mk
∗
⇀m in L∞(D; R3) , ∆uk + divmk = 0 in R3

}
·

In the following lemma we prove that in the definition of Γ − lim inf (3.1) we can change the space where we
minimize, in order to use Sobolev functions defined on D with fixed boundary values, instead of functions in
H1(R3), and this will simplify the further calculations.

Lemma 3.1. For any D ∈ O(Ω) and m ∈ M∗ we have

Γ − lim inf Fεk
(m;D) = F0(m;D)

where

F0(m;D) := inf
{mk,uk}∈ M′

D

{
lim inf
k→∞

∫
D

(
φ

(
x,

x

εk
,mk

)
+

1
2
|∇uk|2

)
dx
}
,

with

M′
D :=

{ {mk, uk} ⊂ L∞(D,S2) × (u+H1
0 (D)

)
,

mk
∗
⇀m in L∞(D; R3) , ∆uk + divmk = 0 in D

}
·

Remark 3.2. Note that M′
D is well defined since it is well known that for any D ∈ O(Ω), u ∈ H1(D) and

m ∈ L2(D; R3), there exists a unique solution of the generalized Dirichlet problem{
∆v + divm = 0 in D

v − u ∈ H1
0 (D).
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Proof of Lemma 3.1. Let {mk, uk} ∈ M′
D such that

lim
k→∞

∫
D

φ

(
x,

x

εk
,mk

)
+

1
2
|∇uk|2 dx = lim inf

k→∞

∫
D

φ

(
x,

x

εk
,mk

)
+

1
2
|∇uk|2 dx,

extend mk to be m outside D and let Uk ∈ H1(R3) be the unique solution of ∆Uk + div mk = 0 in R3, then we
have {mk, Uk} ∈ MD. Define vk := uk − Uk and ψk := u− Uk. Then{

∆vk = 0 on D,

vk ∈ ψk +H1
0 (D),

(3.2)

since vk = ψk + (uk − u) and uk ∈ u+H1
0 (D). Moreover ∆ψk = −div (mk −m) in R3 and since mk −m

∗
⇀ 0

in L∞(D; R3), by Lemma 2.1 we have ψk ⇀ 0 in H1
loc(R

3) and {∇φk} is 2-equi-integrable over R3. Now using
Lemma 2.2 and (3.2) we can say that vk → 0 in H1(D), i.e. lim

k→∞
‖uk − Uk‖H1(D) = 0, Moreover, we observe

that, by Lemma 2.2, {∇uk} is 2-equi-integrable on D and weakly convergent inH1(D) (it is sufficient to consider
uk as the solution of ∆uk + divmk = 0 in D with uk ∈ u+H1

0 (D)). Then

Γ − lim inf Fεk
(m;D) ≤ lim inf

k→∞

∫
D

φ

(
x,

x

εk
,mk

)
+

1
2
|∇Uk|2 dx

≤ lim inf
k→∞

∫
D

φ

(
x,

x

εk
,mk

)
+

1
2
|∇uk|2 dx

+ lim
k→∞

∫
D

1
2
|∇uk −∇Uk|2 dx

+ lim
k→∞

∫
D

|∇uk||∇uk −∇Uk| dx

= lim
k→∞

∫
D

φ

(
x,

x

εk
,mk

)
+

1
2
|∇uk|2 dx.

Taking the infimum on MD we have

Γ − lim inf Fεk
(m;D) ≤ F0(m;D).

The opposite inequality follows taking {mk, Uk} ∈ MD such that

lim
k→∞

∫
D

φ

(
x,

x

εk
,mk

)
+

1
2
|∇Uk|2 dx = lim inf

k→∞

∫
D

φ

(
x,

x

εk
,mk

)
+

1
2
|∇Uk|2 dx,

letting uk ∈ u + H1
0 (D) be the unique solution of ∆uk + div mk = 0 in D and using the same argument as

above. �

In the next lemma, we use the first part of Proposition 2.3 to prove that from each sequence εn → 0+ we
can extract a subsequence that admits the Γ-limit for a dense family of open sets of O(Ω). This result allows
us to follow the usual procedure, that is to work with a particular subsequence with nice properties, to identify
its Γ-limit and then to show that it is the Γ-limit which we are looking for.
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Lemma 3.3. Let εn → 0 and let R(Ω) be the family of all finite unions of open cubes contained in Ω and with
vertices in Q3. Then there exists a subsequence {εnk

} of {εn} such that the Γ − limit

Γ − lim
k→∞

Fεnk
(m;R)

exists for all m ∈ M∗ and for all R ∈ R(Ω).

Proof. Fix R ∈ R(Ω). For simplicity set Fεn = Fn. We can consider Fn as a functional defined for (m,h) ∈
{L∞(R3;S2) × L2(R3; R3)} ∩ Ker(A), as

Fn(m;h) = Fn(m;h;R) =
∫

R

φ

(
x,

x

εn
,m

)
+

1
2
|h|2 dx,

where A is the operator defined by (1.2)

A(m,h) :=
(

div (m+ h)
curlh

)
.

Indeed, if (m,h) ∈ {L∞(R3;S2) × L2(R3; R3)} ∩ Ker(A) then there exists u ∈ H1(R3), such that h = ∇u and
∆u+ divm = 0 in R3.

Let B∞ denote the closed unit ball of L∞(R; R3) and for each l ∈ N consider

lB2 =
{
v ∈ L2(R; R3) : ‖v‖L2 ≤ l

} ·
We observe that the space B∞ × lB2 endowed with the weak∗-convergence in L∞ and the weak-convergence
in L2 is metrizable. Indeed B∞ with the weak∗-topology is metrizable since it is compact and separable, and
lB2 with the weak-topology is metrizable, since the dual space of L2(R; R3) is separable. Let’s denote by dl the
metric on B∞ × lB2.

Consider l = 1 and apply Proposition 2.3 to the sequence of functionals {Fn(·; ·;R)} restricted to {B∞ ×
B2 ∩ Ker(A), d1}. Then we can find an increasing sequence of integers {n1

j} such that

Γ(d1) − lim
j→∞

Fn1
j
(v;w;R)

exists for all (v, w) ∈ {B∞ × B2} ∩ Ker(A). Now we proceed recursively, so that given l ∈ N we apply the
Proposition 2.3 to the sequence {Fnl−1

j
(·; ·;R)} restricted to {B∞ × lB2 ∩ Ker(A), dl} to obtain a subsequence

{nl
j} of {nl−1

j } such that
Γ(dl) − lim

j→∞
Fnl

j
(v;w;R)

exists for all (v, w) ∈ {B∞× lB2}∩Ker(A). Let nk := nk
k. Since {nk} is a subsequence of all {nl

j} we have that
for each l ∈ N

Γ(dl) − lim
k→∞

Fnk
(v;w;R)

exists for all (v, w) ∈ {B∞ × lB2} ∩ Ker(A).
We claim that the Γ-limit

Γ − lim
k→0

Fnk
(v;w;R) (3.3)

exists for all (v, w) ∈ {B∞ × L2(R; R3)} ∩ Ker(A). Indeed assume by contradiction that this is not the case.
Then there exists (v, w) ∈ {B∞ × L2(R; R3)} ∩ Ker(A) for which

F−(v;w) := Γ − lim inf
k→∞

Fnk
(v;w;R) < F+(v;w) := Γ − lim sup

k→∞
Fnk

(v;w;R).
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Let (vk, wk) ∈ {B∞ × L2(R; R3)} ∩ Ker(A) such that vk
∗
⇀ v in L∞(R; R3) and wk ⇀ w in L2(R; R2) and

lim inf
k→∞

Fnk
(vk;wk, R) = F−(v;w).

Since wk ⇀ w in L2(R; R2) we may find an integer l0 such that (vk, wk), (v, w) ∈ {B∞ × l0B2}∩Ker(A) for all
k ∈ N. Consequently

dl0 ((vk, wk), (v, w)) → 0 as k → ∞,

and thus
Γ(dl0) − lim inf

k→∞
Fnk

(v;w;R) ≤ lim inf
k→∞

Fnk
(v;w;R)

= F−(v;w) < F+(v;w)

≤ Γ(dl0) − lim sup
k→∞

Fnk
(v;w;R),

which contradict the existence of the Γ-limit Γ(dl0) − lim
k→∞

Fnk
(v;w;R), and where we have used the fact that

F+(v;w) = inf
{

lim sup
k→∞

Fnk
(vk;wk;R) : (vk, wk) ∈ B∞ × L2(R) ∩ Ker(A),

(vk, wk) ∗
⇀,⇀ (v, w) inB∞ × L2(R)

}
≤ Γ(dl0) − lim sup

k→∞
Fnk

(v;w;R)

= inf
{

lim sup
k→∞

Fnk
(vk;wk;R) : (vk, wk) ∈ B∞ × l0B2 ∩ Ker(A),

(vk, wk) ∗
⇀,⇀ (v, w) inB∞ × L2(R)

}
·

Hence (3.3) holds. To conclude the proof it suffices to observe that since the family R(Ω) is countable, with a
diagonal argument it is possible to extract a further subsequence for which (3.3) holds for all R ∈ R(Ω). �
Remark 3.4. The previous proof asserts that for any given D ∈ O(Ω) and εn → 0+ there exists a subsequence
{εnk

} (depending on the particular set D) of {εn} such that the Γ-limit

Γ − lim
k→∞

Fεnk
(m;D)

exists for all m ∈ M∗.

Given εn → 0+ let εnk
as in Lemma 3.3. For any m ∈ M∗ and D ∈ O(Ω) set

F−(m;D) := Γ − lim inf Fεnk
(m;D).

The next step is to prove the existence of an integral representation for F−(m;D). In this direction goes the
following lemma.

Lemma 3.5. For every m ∈ M∗, F−(m; ·) is the trace of a Radon measure.

Proof. To simplify the notations in this proof we will refer to {εnk
} simply as {ε}. In order to prove that F−

is the trace of a Radon measure it is suffices to prove subadditivity for nested sets, that is

F−(m;D) ≤ F−(m;D \ E) + F−(m;B) (3.4)

if E ⊂⊂ B ⊂⊂ D ⊂⊂ Ω.
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By definition of Γ−convergence and Lemma 3.1, for fixed η > 0 there exist two sequences of pairs of functions
{(mε, uε)} ∈ M′

D\E , {(wε, zε)} ∈ M′
B such that

lim
ε→0

∫
D\E

φ
(
x,
x

ε
,mε

)
+

1
2
|∇uε| dx ≤ F−(m;D \ E) + η

lim
ε→0

∫
B

φ
(
x,
x

ε
, wε

)
+

1
2
|∇zε| dx ≤ F−(m;B) + η.

Since by Lemma 2.2 {∇uε} and {∇zε} are 2-equiintegrable, we have that there exists K > 0 such that∫
B\E

(
|∇uε|2 + |∇zε|2

)
dx ≤ K

and we can find an open set S with E ⊂⊂ S ⊂⊂ B such that for j sufficiently large we have∫
Sj

(
a(x) + |∇uε|2 + |∇zε|2

)
dx < ε (3.5)

where

Sj :=
{
x ∈ S :

1
j + 1

≤ dist(x, ∂S) ≤ 1
j

}
·

Let θj be cut-off functions with compact support in S, which are equal to 1 when dist(x, ∂S) ≥ 1
j and 0 when

dist(x, ∂S) ≤ 1
j+1 . For x ∈ D setting

M̂j,ε := (1 − θj)mε + θjwε

Mj,ε := π(M̂j,ε) with π(m) :=
{ m

|m| if m �= 0
e1 if m = 0

Ûj,ε := (1 − θj)uε + θjzε,

we have (See [13], Lem. 6) that M̂j,ε
∗
⇀ m in L∞(D; R3) for ε→ 0 and j → 0 and for j fixed

∆Ûj,ε + div M̂j,ε → 0 in H−1(D). (3.6)

Now we can say∫
D

φ
(
x,
x

ε
,Mj,ε

)
+

1
2

∣∣∣∇Ûj,ε

∣∣∣2 dx ≤
∫

D\E

φ
(
x,
x

ε
,mε

)
+

1
2
|∇uε|2 dx

+
∫

B

φ
(
x,
x

ε
, wε

)
+

1
2
|∇zε|2 dx+

∫
Sj

φ
(
x,
x

ε
,Mj,ε

)
+

1
2

∣∣∣∇Ûj,ε

∣∣∣2 dx

≤
∫

D\E

· · · dx +
∫

B

· · · dx+
∫

Sj

a(x) dx +
∫

Sj

1
2
|∇uε|2 +

1
2
|∇zε|2 dx

+ C

∫
Sj

|∇θj |2 |uε − zε|2 dx,

and since uε − zε ⇀ 0 in H1(B \E), Sj ⊂ B \E for large j and |Sj | → 0, using (3.5), letting ε→ 0 and j → ∞,
we obtain

lim inf
j→∞

lim inf
ε→0

∫
D

φ
(
x,
x

ε
,Mj,ε

)
+

1
2

∣∣∣∇Ûj,ε

∣∣∣2 dx ≤ F−(m;D \ E) + F−(m;B) + 3η.



HOMOGENIZATION OF MICROMAGNETICS LARGE BODIES 305

Let Uj,ε ∈ u + H1
0 (D) be the solution of ∆Uj,ε + divMj,ε = 0 in D. Observe that, by definition of M̂j,ε and

Mj,ε we have for any fixed p ≥ 1∫
D

∣∣∣M̂j,ε −Mj,ε

∣∣∣p dx ≤ 2p |Sj | → 0 as j → ∞,

hence, by (3.6)

lim
j→∞

lim
ε→0

∆
(
Ûj,ε − Uj,ε

)
= lim

j→∞
lim
ε→0

div
(
−M̂j,ε +Mj,ε

)
= 0 in H−1(D).

So since Ûj,ε − Uj,ε ∈ H1
0 (D), by definition we have

lim
j→∞

lim
ε→0

∥∥∥∇(Ûj,ε − Uj,ε

)∥∥∥
L2(D;R3)

= 0.

Now we are in the position to say that

lim inf
j→∞

lim inf
ε→0

∫
D

φ
(
x,
x

ε
,Mj,ε

)
+

1
2
|∇Uj,ε|2 dx ≤ lim inf

j→∞
lim inf

ε→0

∫
D

φ
(
x,
x

ε
,Mj,ε

)
+

1
2

∣∣∣∇Ûj,ε

∣∣∣2 dx

+ lim inf
j→∞

lim inf
ε→0

∫
D

1
2

∣∣∣∇Ûj,ε −∇Uj,ε

∣∣∣2 dx

= lim inf
j→∞

lim inf
ε→0

∫
D

φ
(
x,
x

ε
,Mj,ε

)
+

1
2

∣∣∣∇Ûj,ε

∣∣∣2 dx

≤ F−(m;D \ E) + F−(m;B) + 3η.

Finally using a diagonalization argument and letting η → 0 we found Uε and Mε
∗
⇀m such that ∆Uε+divMε =

0 in D and

lim inf
ε→0

∫
D

φ
(
x,
x

ε
,Mε

)
+

1
2
|∇Uε|2 dx ≤ F−(m;D \ E) + F−(m;B),

and taking the infimum we have

F−(m;D) ≤ F−(m;D \ E) + F−(m;B). �

In particular F−(m; ·) as a set function is absolutely continuous with respect to Lebesgue measure on R3, and
we are interested in finding its Radon-Nikodỳm derivative in order to obtain an explicit formula for the density
function in the integral representation of F−.

Suppose now that the anisotropy energy, φ, does not depend on the position, that is φ : (R3 × S2 ∪ {0}) →
[0,∞) and define for (µ, h) ∈ B × R3

fhom(µ, h) := inf
Sµ

{
lim inf
k→∞

∫
Q

φ (ky,Mk(y)) +
1
2
|h+ ∇Uk(y)|2 dy

}
where Q is the unit cube in R3 and

Sµ :=
{ {Mk, Uk} ∈ L∞(Q,R3) × (H1

0 (Q)
)

: |Mk| = χQ,

Mk
∗
⇀ µ in L∞(Q,R3) , divMk + ∆Uk = 0 in Q

}
·

Remark 3.6. We want to point out that the we can prove the upper semicontinuity of fhom using the same
argument used in [13] (see Lems. 8 and 9 in [13]).
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Now we are in position to state the following

Proposition 3.7. For every m ∈ M∗ and for a.e. x0 ∈ Ω we have

dF−(m; ·)
dL3

(x0) = fhom (m(x0),∇u(x0)) ,

where u ∈ H1(R3) is the unique solution of ∆u+ divm = 0 in R3.

Proof. In order to simplify the notations we will represent the subsequence {εnk
} by {εn} or simply by {ε}. We

divide the proof in four steps.

Step 1 (translation invariance). We claim that

F− (m;D) = F− (m(· − x0);D + x0) .

Proof of Step 1. Let {mε, uε} ∈ M′
D such that

F−(m;D) = lim inf
ε→0

Fε(mε;D) = lim inf
ε→0

∫
D

φ
(x
ε
,mε

)
+

1
2
|∇uε|2 dx.

Consider the sequence zε =
[x0

ε

]
∈ Z3, we have xε := zεε→ x0 and by periodicity of φ

Fε(mε;D) =
∫

D

φ

(
x+ xε

ε
,mε(x)

)
+

1
2
|∇uε(x)|2 dx

=
∫

D+xε

φ
(y
ε
,mε(y − xε)

)
+

1
2
|∇uε(y − xε)|2 dy.

Let B ⊂⊂ D, for ε small enough we have that D + xε ⊃ B + x0 and thus

Fε(mε;D) ≥
∫

B+x0

φ
(y
ε
,mε(y − xε)

)
+

1
2
|∇uε(y − xε)|2 dy. (3.7)

Since mε(·−xε)
∗
⇀m(·−x0) in L∞(B+x0,R

3), div (mε(· − xε) + ∇uε(· − xε)) = 0 in B+x0 and ∇uε(·−xε) ⇀
∇u(· − x0) in L2(B + x0; R3), by (3.7) we obtain

F−(m;D) ≥ F− (m(· − x0);B + x0) .

By setting Bm := Rm − x0, where Rm ∈ R(Ω) and Rm ↗ D + x0, we obtain, using the inner regularity that

F−(m;D) ≥ F− (m(· − x0);D + x0) .

The converse inequality can be proved following the same argument.

Step 2 (lower bound). We have that

dF−(m; ·)
dL3

(x0) ≥ fhom (m(x0),∇u(x0)) .

Proof of Step 2. Let {mε, uε} ∈ M′
Q(x0,r), where Q(x0, r) is the cube centered in x0 and with side r, such that

lim
ε→0

∫
Q(x0,r)

φ
(x
ε
,mε(x)

)
+

1
2
|∇uε(x)|2 dx ≤ F−(m,Q(x0, r)) + r4.
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We have mε(·+ x0)
∗
⇀m(·+ x0) in L∞(Q(0, r),R3) and ∆uε(·+ x0) + div mε(·+ x0) = 0 in Q(0, r). So we can

say, by definition of Radon-Nikodým derivative and by Step 1, that

dF−(m; ·)
dL3

(x0) = lim
r→0

F−(m;Q(x0, r))
r3

= lim
r→0

F−(m(· + x0);Q(0, r))
r3

≥ lim sup
r→0

lim
ε→0

−
∫

rQ

φ
(x
ε
,mε(x+ x0)

)
+

1
2
|∇uε(x + x0)|2 dx

= lim sup
r→0

lim
ε→0

∫
Q

φ
(r
ε
y,mr,ε(y)

)
+

1
2
|∇ur,ε(y)|2 dy

where

mr,ε := mε(ry + x0) and ur,ε :=
uε(ry + x0) + uε(x0)

r
·

Moreover we have (see [13], Lem. 7 for a proof) that:

(1) mr,ε
∗
⇀m(x0) in L∞(Q,R3) if first ε→ 0 then r → 0;

(2) ur,ε ⇀ u0(y) = ∇u(x0)y in H1(Q);
(3) the sequence {mr,ε, ur,ε} ∈ L∞(Q,S2) × (ur +H1

0 (Q)) is such that

∆ur,ε + div mr,ε = 0 in Q

where

ur(y) =
u(x0 + ry) − u(x0)

r
·

Diagonalize to get the subsequences m̂k = mrk,εk
and ûk = urk,εk

with

{(m̂k, ûk)} ∈ L∞(Q,S2) × (urk
+H1

0 (Q)),

∆ûk + div m̂k = 0 in Q
such that

m̂k
∗
⇀m(x0) in L∞(Q,R3) , ûk ⇀ u0(y) in H1(Q)

dF−(m; ·)
dL3

(x0) ≥ lim
k→∞

∫
Q

φ (sky, m̂k(y)) +
1
2
|∇ûk|2 dy

with sk =
rk
εk

→ ∞.

Set v̂k(y) = ûk(y) − u0(y), we have

dF−(m; ·)
dL3

(x0) ≥ lim
k→∞

∫
Q

φ (sky, m̂k(y)) +
1
2
|∇u0(x0) + ∇v̂k(y)|2 dy. (3.8)

Let vk ∈ H1
0 (Q) be the unique solution of ∆vk + div m̂k = 0 in Q, since

∆(v̂k − vk) = 0 on Q

v̂k − vk = ûk − u0 in ∂Q

as ûk−u0 ⇀ 0 inH1(Q) and {∇ûk} is 2-equi-integrable overQ, by Lemma 2.2 it follows that ‖v̂k − vk‖H1(Q) → 0
and so

lim
k→∞

∫
Q

|∇u0(x0) + ∇v̂k(y)|2 dy = lim
k→∞

∫
Q

|∇u0(x0) + ∇vk(y)|2 dy. (3.9)
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Using (3.8), (3.9) we can write

dF−(m; ·)
dL3

(x0) ≥ lim
k→∞

∫
Q

φ (sky, m̂k(y)) +
1
2
|∇u0(x0) + ∇vk(y)|2 dy

≥ lim inf
k→∞

1
s3k

∫
([sk]+1)Q

φ

(
x, m̂k

(
x

sk

))
+

1
2

∣∣∣∣∇u0(x0) + ∇vk

(
x

sk

)∣∣∣∣2 dx

− lim sup
k→∞

1
s3k

∫
([sk]+1)Q\skQ

φ

(
x, m̂k

(
x

sk

))
+

1
2

∣∣∣∣∇u0(x0) + ∇vk

(
x

sk

)∣∣∣∣2 dx︸ ︷︷ ︸
A

.

We claim that A = 0, indeed we can write

A = lim sup
k→∞

∫
([sk]+1)

sk
Q\Q

φ (skx, m̂k(y)) +
1
2
|∇u0(x0) + ∇vk (y)|2 dx

and since
[sk] + 1
sk

→ 1 ⇒
∣∣∣∣ ([sk] + 1)

sk
Q \Q

∣∣∣∣ = [sk] + 1
sk

− 1 → 0,

the 2-equi-integrability of {∇vk} and the growth condition (1.4) imply A = 0.

Setting now hk =
1
sk

; nk = [sk] + 1 ∈ N, we have 1 < hknk → 1 and

dF−(m; ·)
dL3

(x0) ≥ lim inf
k→∞

(hknk)3

n3
k

∫
nkQ

φ (x, m̂k(hkx)) +
1
2
|∇u0(x0) + ∇vk(hkx)|2 dx

= lim inf
k→∞

∫
Q

φ (nkx, m̂k(nkhkx)) +
∣∣∣∣∇u0(x0) +

1
2
∇vk(nkhkx)

∣∣∣∣2 dx.

Set m̃k(y) = m̂k(nkhky) , ṽk(y) = vk(nkhky), we have

m̃k(y) ∗
⇀m(x0) in L∞(Q,R3) and ṽk(y) ⇀ 0 in H1(Q).

Note that the functions m̂k and vk are supposed extended by periodicity.
Now let v̄k ∈ H1

0 (Q) be the unique solution of ∆v̄k + div m̃k = 0 in Q, we claim that ‖v̄k − ṽk‖H1(Q) → 0.
Indeed, since Q ⊂ nkhkQ and by definition of ṽk, we have

∆(ṽk − v̄k) = 0 in Q

ṽk − v̄k = ṽk on ∂Q

by Lemma 2.2 with φk = ṽk and mk = 0 we have

ṽk − v̄k → 0 in H1(Q).

Finally we have

dF−(m; ·)
dL3

(x0) ≥ lim inf
k→∞

∫
Q

φ (nkx, m̃k(x)) +
1
2
|∇u0(x0) + ∇v̄k(x)|2 dx

≥ fhom (m(x0),∇u(x0)) .
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Step 3 (upper bound for piecewise constant magnetizations). We prove that if m ∈ M∗ is such that

m(x) =
k∑

i=1

ξiχDi(x), (3.10)

where |ξi| ≤ 1 and the sets Di are pairwise disjoint, |∂Di| = 0 and
⋃k

i=0Di = Ω, then:

dF−(m; ·)
dL3

(x0) ≤ fhom (m(x0),∇u(x0)) .

Proof of Step 3. Assume that x0 ∈ ⋃k
i=0Di, say x0 ∈ D1, so m(x) = m(x0) = ξ1 ∀x ∈ Q(x0, r) for r small

enough.
Without loss of generality we may assume also that

u(x0 + ry) − u(x0)
r

−∇u(x0)y → 0 inH1(Q). (3.11)

Note that (3.11) means that x0 is a 2-Lebesgue point for ∇u and a point of 2-approximate differentiability for u.
For all η fixed we can find, by definition of fhom, {(Mk, Uk)} ∈ Sm(x0) such that

lim
n→∞

∫
Q

φ (ky,Mk(y)) +
1
2
|∇u(x0) + ∇Uk(y)|2 dy ≤ fhom (m(x0),∇u(x0)) + η.

Set γn,r = r
εn

[
r

εn

]−1

≥ 1 and kn =
[

r
εn

]
, where we have used the notation {εn} for {εnk

}. For any fixed r << 1
define

M̃n(x) = Mkn

(
(x− x0)γn,r

r

)
,

and remark that for r small enough we have m(x) = m(x0) in Q(x0, r). We claim that M̃n
∗
⇀ m(x) in

L∞ (Q(x0, r)). Indeed to prove the L∞ weak-∗ convergence of M̃n we only have to show (see [6], Lem. 1.4) that

lim
n→∞

∫
D

(
M̃n −m(x0)

)
dx = 0 for all cube D ⊂ Q(x0, r), (3.12)

since we already know that ‖M̃n‖∞ ≤ 1.
Let D ⊂ Q(x0, r) a cube, we have, using a change of variables∫

D

(
M̃n −m(x0)

)
dx =

1
γ3

n,r

∫
γn,r(D−x0)

(
Mkn

(y
r

)
−m(x0)

)
dy = An +Bn

where
An =

1
γ3

n,r

∫
γn,r(D−x0)\(D−x0)

(
Mkn

(y
r

)
−m(x0)

)
dy

Bn =
1
γ3

n,r

∫
(D−x0)

(
Mkn

(y
r

)
−m(x0)

)
dy.

Now observe that
lim sup

n→∞
|An| ≤ lim sup

n→∞

∫
γn,r(D−x0)\(D−x0)

∣∣∣Mkn

(y
r

)
−m(x0)

∣∣∣ dy

≤ 2 lim
n→∞ |γn,r(D − x0) \ (D − x0)| = 0
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and that

lim sup
n→∞

|Bn| = r3

∣∣∣∣∣
∫

D−x0
r

(Mkn(x) −m(x0))

∣∣∣∣∣ dx = 0

since Mkn

∗
⇀m(x0) in L∞(Q) and the cube D−x0

r ⊂ Q. So we have (3.12) since

lim
n→∞

∣∣∣∣∫
D

(
M̃n −m(x0)

)
dx
∣∣∣∣ ≤ lim sup

n→∞
|An| + lim sup

n→∞
|Bn|.

Using the sequence M̃n in the definition of F , setting Ũn ∈ u + H1
0 (Q(x0, r)) the unique solution of ∆Ũn +

div M̃n = 0 in Q(x0, r) and using Step 1, we can write

dF(m; ·)
dL3

(x0) = lim
r→0

F(m(· + x0); rQ)
r3

≤ lim inf
r→0

lim inf
n→∞

1
r3

∫
rQ

φ

(
x

εn
, M̃n(x+ x0)

)
+

1
2

∣∣∣∇Ũn(x+ x0)
∣∣∣2 dx

= lim inf
r→0

lim inf
n→∞

1
r3γ3

n,r

∫
γn,rrQ

φ

([
r

εn

]
y

r
, M̃n

(
y

γn,r
+ x0

))
+

1
2

∣∣∣∣∇Ũn

(
y

γn,r
+ x0

)∣∣∣∣2 dy

= B + C,

where

B = lim inf
r→0

lim inf
n→∞

1
r3

∫
rQ

φ

([
r

εn

]
y

r
,Mkn

(y
r

))
+

1
2

∣∣∣∣∇Ũn

(
y

γn,r
+ x0

)∣∣∣∣2 dy

and

C = lim inf
r→0

lim inf
n→∞

1
r3

∫
γn,rrQ\rQ

φ

([
r

εn

]
y

r
,Mkn

(y
r

))
+

1
2

∣∣∣∣∇Ũn

(
y

γn,r
+ x0

)∣∣∣∣2 dy.

Using the same argument as in Step 2 we can show that C = 0 since |γn,rrQ \ rQ| goes to zero as n→ ∞.
Moreover setting

Vkn(y) = y∇u(x0) + Ukn(y)

Un(y) =
Ũn

(
xr

γn,r
+ x0

)
− u(x0)

r
γn,r

·

Since 
∆
(
Vkn(y) − Un(y)

)
= 0 in Q

Vkn(y) − Un(y) = y∇u(x0) −
u
(

xr
γn,r

+ x0

)
− u(x0)

r
γn,r

on ∂Q

by Lemma 2.2 and by (3.11) we have
∥∥Vkn − Un

∥∥
H1(Q)

→ 0 as r → 0.
So we can say, changing variables, using the definition of kn and the equality

∇Un(y) = ∇Ũn

(
xr

γn,r
+ x0

)
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that

B = lim inf
r→0

lim inf
n→∞

∫
Q

φ

([
r

εn

]
y,Mkn(y)

)
+

1
2

∣∣∣∣∇Ũn

(
yr

γn,r
+ x0

)∣∣∣∣2 dy

= lim inf
r→0

lim inf
n→∞

∫
Q

φ

([
r

εn

]
y,Mkn(y)

)
+

1
2

∣∣∇Un(y)
∣∣2 dy

≤ lim inf
r→0

lim inf
n→∞

∫
Q

φ

([
r

εn

]
y,Mkn(y)

)
+

1
2
|∇Vkn(y)|2 dy

= lim inf
r→0

lim inf
n→∞

∫
Q

φ (kny,Mkn(y)) +
1
2
|∇u(x0) + ∇Ukn(y)|2 dy

≤ fhom (m(x0);∇u(x0)) + η.

Let η goes to zero and we have the claim.

Step 4 (upper bound for arbitrary magnetizations). We now prove that for a general m ∈ M∗ we have that

F−(m;D) ≤
∫

D

fhom(m(x),∇u(x)).

Proof of Step 4. The Steps 2 and 3 ensure us that if m ∈ M∗ is of the form (3.10) we have

F−(m;D) =
∫

D

fhom (m(x),∇u(x)) . (3.13)

For a general m ∈ M∗ construct a sequence mk ∈ M∗ of the form (3.10) such that mk
∗
⇀m in L∞(D; R3) and

mk → m in L2(D,R3). We have, by (3.13) that

F−(m;D) ≤ lim inf
k→∞

F−(mk, D)

= lim inf
k→∞

∫
D

fhom (mk(x),∇uk(x)) ,

and up to extract a subsequence, we can assume that

lim inf
k→∞

∫
D

fhom (mk(x),∇uk(x)) = lim
k→∞

∫
D

fhom (mk(x),∇uk(x)) .

Since by Lemma 2.2 ∇uk → ∇u in L2(D; R3), using Fatou’s Lemma and the upper semicontinuity of fhom (see
Rem. 3.6) we obtain

F−(m;D) ≤ lim sup
k→∞

∫
D

fhom (mk(x),∇uk(x))

≤
∫

D

lim sup
k→∞

fhom (mk(x),∇uk(x))

≤
∫

D

fhom (m(x),∇u(x)) .

Last inequality together with Step 2 completes the proof. �
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Now we can prove the main theorem

Proof of Theorem 1.1. We start proving that for any εn → 0+ and D ∈ O(Ω) we have

F−(·;D) = Γ − lim inf
n→∞ Fεn(·;D). (3.14)

Let {εnk
} as in Lemma 3.3, we have always

F−(·;D) = Γ − lim inf
k→∞

Fεnk
(·;D) ≥ Γ − lim inf

n→∞ Fεn(·;D).

Thus assume by contradiction that there exists εn → 0+ and m ∈ M∗ such that

F−(m;D) > Γ − lim inf
n→∞ Fεn(m;D),

let {mn ∈ M} be such that mn
∗
⇀ m in L∞(D,R3) and F−(m;D) > lim inf Fεn(mn, D), and choose a

subsequence {εnj} such that

F−(m;D) > lim
j→∞

Fεnj
(mnj , D).

By previous lemmas we can extract a further subsequence {εnjh
} such that

F−(m;D) = Γ − lim inf
h→∞

Fεnjh
(m;D)

≤ lim
h→∞

Fεnjh
(mnjh

, D)

< F−(m;D),

which is a contradiction that prove (3.14).
Now we claim that for any εn → 0+ and m ∈ M∗

Γ − lim sup
n→∞

Fεn(m;D) ≤ F−(m;D).

By taking mn = m and using the boundedness of φ, we get

Γ − lim sup
n→∞

Fεn(m;D) ≤ lim sup
n→∞

Fεn(mn, D)

≤ C

∫
D

(|∇u|2 + 1) dx = K,

where u ∈ H1(R3) is the unique solution of ∆u+ divm = 0 in R3. Then in the definition of Γ− lim sup we can
consider only the sequences {mk} such that mk

∗
⇀m in L∞(R3) and

lim sup
n→∞

Fεn(mn, D) ≤ K.

Moreover for every {mn} in this family we can always consider a subsequence {mnk
} with the same lim sup and

with {∇unk
} uniformly bounded in l2(R3) by a constant l.

Using the notation introduced in the proof of Lemma 3.3 we can conclude that

Γ − lim sup
n→∞

Fεn(m;D) = Γ(dl) − lim sup
n→∞

Fεn(m;D). (3.15)
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By Remark 3.4 and by Proposition 3.7, for any subsequence {εnk
} of {εn} there exists a subsequence {εnkj

}
(depending on D) such that

Γ − limFεnkj
(m;D) = F−(m;D)

=
∫

D

fhom(m(x),∇u(x)) dx.

We can now apply the second part of Proposition 2.3 in the metric space (B∞ × lB2, dl) to conclude that

Γ(dl) − lim
n→∞Fεn(m;D) = F−(m;D). (3.16)

Using (3.15) and (3.16) we have the claim.
Finally we have proved that F−(m;D) is in fact the Γ − limε→0 Fε(m;D). Then applying this result with

D = Ω and recalling that the non local term

1
2

∫
R3\Ω

|∇u(x)| dx

and the interaction energy ∫
Ω

he(x) ·m(x) dx

are continuous perturbations, we have the desired result. �
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