An approximation theorem for sequences of linear strains and its applications
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 2, pp. 224-242.

We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in L 1 by the sequence of linear strains of mapping bounded in Sobolev space W 1,p . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.

DOI : 10.1051/cocv:2004001
Classification : 26B25, 41A30, 49J45
Mots-clés : linear strains, maximal function, approximate sequences, quasiconvex envelope, quasiconvex hull
@article{COCV_2004__10_2_224_0,
     author = {Zhang, Kewei},
     title = {An approximation theorem for sequences of linear strains and its applications},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {224--242},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {2},
     year = {2004},
     doi = {10.1051/cocv:2004001},
     mrnumber = {2083485},
     zbl = {1085.49017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2004001/}
}
TY  - JOUR
AU  - Zhang, Kewei
TI  - An approximation theorem for sequences of linear strains and its applications
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2004
SP  - 224
EP  - 242
VL  - 10
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2004001/
DO  - 10.1051/cocv:2004001
LA  - en
ID  - COCV_2004__10_2_224_0
ER  - 
%0 Journal Article
%A Zhang, Kewei
%T An approximation theorem for sequences of linear strains and its applications
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 224-242
%V 10
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2004001/
%R 10.1051/cocv:2004001
%G en
%F COCV_2004__10_2_224_0
Zhang, Kewei. An approximation theorem for sequences of linear strains and its applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 2, pp. 224-242. doi : 10.1051/cocv:2004001. http://www.numdam.org/articles/10.1051/cocv:2004001/

[1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984) 125-145. | MR | Zbl

[2] R.A. Adams, Sobolev Spaces. Academic Press (1975). | MR | Zbl

[3] L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139 (1997) 201-238. | MR | Zbl

[4] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977) 337-403. | MR | Zbl

[5] J.M. Ball, A version of the fundamental theorem of Young measures, in Partial Differential Equations and Continuum Models of Phase Transitions, M. Rascle, D. Serre and M. Slemrod Eds., Springer-Verlag (1989) 207-215. | MR | Zbl

[6] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100 (1987) 13-52. | MR | Zbl

[7] J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructures and the two-well problem. Phil. R. Soc. Lond. Sect. A 338 (1992) 389-450. | Zbl

[8] J.M. Ball and K. Zhang, Lower semicontinuity of multiple integrals and the biting lemma. Proc. R. Soc. Edinb. Sect. A 114 (1990) 367-379. | MR | Zbl

[9] K. Bhattacharya, Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Continuum Mech. Thermodyn. 5 (1993) 205-242. | MR | Zbl

[10] K. Bhattacharya, N.B. Firoozy, R.D. James and R.V. Kohn, Restrictions on Microstructures. Proc. R. Soc. Edinb. Sect. A 124 (1994) 843-878. | MR | Zbl

[11] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer (1989). | MR | Zbl

[12] F.B. Ebobisse, Luzin-type approximation of BD functions. Proc. R. Soc. Edin. Sect. A 129 (1999) 697-705. | MR | Zbl

[13] F.B. Ebobisse, On lower semicontinuity of integral functionals in LD(Ω). Preprint Univ. Pisa. | MR | Zbl

[14] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland (1976). | MR | Zbl

[15] I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. | MR | Zbl

[16] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Second edn, Academic Press (1983). | MR | Zbl

[17] Z. Iqbal, Variational Methods in Solid Mechanics. Ph.D. thesis, University of Oxford (1999).

[18] A.G. Khachaturyan, Theory of Structural Transformations in Solids. John Wiley and Sons (1983).

[19] D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115 (1991) 329-365. | MR | Zbl

[20] V.A. Kondratev and O.A. Oleinik, Boundary-value problems for the system of elasticity theory in unbounded domains. Russian Math. Survey 43 (1988) 65-119. | MR | Zbl

[21] R.V. Kohn, New estimates for deformations in terms of their strains. Ph.D. thesis, Princeton University (1979).

[22] R.V. Kohn, The relaxation of a double-well energy. Cont. Mech. Therm. 3 (1991) 981-1000. | MR | Zbl

[23] J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. J. Math. Ann. 313 (1999) 653-710. | MR | Zbl

[24] K. De Leeuw and H. Mirkil, Majorations dans L des opérateurs différentiels à coefficients constants. C. R. Acad. Sci. Paris 254 (1962) 2286-2288. | MR | Zbl

[25] F.C. Liu, A Luzin type property of Sobolev functions. Ind. Univ. Math. J. 26 (1977) 645-651. | MR | Zbl

[26] C.B. Jr Morrey, Multiple integrals in the calculus of variations. Springer (1966). | MR | Zbl

[27] S. Müller, A sharp version of Zhang's theorem on truncating sequences of gradients. Trans. AMS 351 (1999) 4585-4597. | Zbl

[28] S. Müller and V. Šverák, Attainment results for the two-well problem by convex integration, in Geometric analysis and the calculus of variations, Internat. Press, Cambridge, MA (1996) 239-251. | MR | Zbl

[29] R.T. Rockafellar, Convex Analysis. Princeton University Press (1970). | MR | Zbl

[30] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970). | MR | Zbl

[31] V. Šverák, Quasiconvex functions with subquadratic growth. Proc. R. Soc. Lond. Sect. A 433 (1991) 723-725. | MR | Zbl

[32] V. Šverák, Rank one convexity does not imply quasiconvexity. Proc. R. Soc. Edinb. Sect. A 120 (1992) 185-189. | MR | Zbl

[33] V. Šverák, On the problem of two wells in Microstructure and Phase Transition. IMA Vol. Math. Appl. 54 (1994) 183-189. | MR | Zbl

[34] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symp., R.J. Knops Ed., IV (1979) 136-212. | MR | Zbl

[35] R. Temam, Problèmes Mathématiques en Plasticité. Gauthier-Villars (1983). | MR | Zbl

[36] J.H. Wells and L.R. Williams, Embeddings and extensions in analysis. Springer-Verlag (1975). | MR | Zbl

[37] B.-S. Yan, On W 1,p -quasiconvex hulls of set of matrices. Preprint.

[38] K.-W. Zhang, A construction of quasiconvex functions with linear growth at infinity. Ann. Sc. Norm Sup. Pisa. Serie IV XIX (1992) 313-326. | EuDML | Numdam | MR | Zbl

[39] K.-W. Zhang, Quasiconvex functions, SO(n) and two elastic wells. Anal. Nonlin. H. Poincaré 14 (1997) 759-785. | EuDML | Numdam | MR | Zbl

[40] K.-W. Zhang, On the structure of quasiconvex hulls. Anal. Nonlin. H. Poincaré 15 (1998) 663-686. | EuDML | Numdam | MR | Zbl

[41] K.-W. Zhang, On some quasiconvex functions with linear growth. J. Convex Anal. 5 (1988) 133-146. | EuDML | MR | Zbl

[42] K.-W. Zhang, Rank-one connections at infinity and quasiconvex hulls. J. Convex Anal. 7 (2000) 19-45. | EuDML | MR | Zbl

[43] K.-W. Zhang, On some semiconvex envelopes in the calculus of variations. NoDEA - Nonlinear Diff. Equ. Appl. 9 (2002) 37-44. | Zbl

[44] K.-W. Zhang, On equality of relaxations for linear elastic strains. Commun. Pure Appl. Anal. 1 (2002) 565-573. | MR | Zbl

Cité par Sources :