@article{AIHPC_1998__15_6_663_0, author = {Zhang, Kewei}, title = {On the structure of quasiconvex hulls}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {663--686}, publisher = {Gauthier-Villars}, volume = {15}, number = {6}, year = {1998}, mrnumber = {1650974}, zbl = {0917.49014}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1998__15_6_663_0/} }
Zhang, Kewei. On the structure of quasiconvex hulls. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 6, pp. 663-686. http://www.numdam.org/item/AIHPC_1998__15_6_663_0/
[A] Compact Convex Sets and Boundary Integrals, Springer-Verlag, 1971. | MR | Zbl
,[AF] Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal., Vol. 86, 1984, pp. 125-145. | MR | Zbl
and ,[BL] Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France, Vol. 101, 1973, pp. 129-184. | EuDML | Numdam | MR | Zbl
, ,[B11] Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., Vol. 63, 1977, pp. 337-403. | MR | Zbl
,[B12] A version of the fundamental theorem of Young measures, in Partial Differential Equations and Continuum Models of Phase Transitions, (edited by M. RASCLE, D. SERRE and M. SLEMROD), 1989, pp. 207-215, Springer-Verlag. | MR | Zbl
,[B13] Sets of gradients with no rank-one connections. J. Math. Pures et Appl., Vol. 69, 1990, pp. 241-259. | MR | Zbl
,[BFJK] Restrictions on Microstructures. Proc. Royal Soc. Edinburgh, A, Vol. 124, 1994, pp. 843-878. | MR | Zbl
, , , ,[BJ1] Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal., Vol. 100, 1987, pp. 13-52. | MR | Zbl
, ,[BJ2] Proposed experimental tests of a theory of fine microstructures and the two-well problem. Phil. Roval Soc. Lon., Vol. 338A, 1992, pp. 389-450. | Zbl
, ,[BZ] Lower semicontinuity and multiple integrals and the biting lemma . Proc. Royal Soc. Edinburgh, Vol. 114A, 1990, pp. 367-379. | MR | Zbl
and ,[CK] Equilibrium configurations of crystals Arch. Rational Mech. Anal., Vol. 103, 1988, pp. 237-277. | MR | Zbl
, ,[D] Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. | MR | Zbl
,[ET] Convex Aanlysis and Variational Problems, North-Holland, 1976. | MR | Zbl
, ,[K] Remarks about equilibrium configurations of crystals, in Material Instabilities in Continuum Mechanics, J. M. BALL ed., Oxford University Press, 1988, pp. 977-83. | MR | Zbl
,[KP] Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal, Vol. 115, 1991, pp. 329-365. | MR | Zbl
, ,[Ma] Young measures and the absence of fine microstructures in a class of phase transitions. European J. Appl. Math, Vol. 3, 1992, pp. 31-54. | MR | Zbl
,[Mo] Multiple integrals in the calculus of variations, Springer, 1966. | MR | Zbl
,[MS] Attainment results for the two-well problem by convex integration, preprint, 1993.
, ,[Re] Liouville's theorem on conformal mappings under minimal regularity assumptions. Siberian Math. J., Vol. 8, 1967, pp. 631-653. | Zbl
,[Ro] Convex Analysis, Princeton University Press, 1970. | MR | Zbl
,[Ru] Functional Analysis, McGraw-Hill, 1973. | MR | Zbl
,[Sv1] On the problem of two wells, preprint. | MR
,[Sv2] On Tartar's conjecture. Ann. Inst. H. Poincaré, Vol. 10, 1993, pp. 405-412. | Numdam | MR | Zbl
,[Sv3] Rank one convexity does not imply quasiconvexity. Proc. Royal Soc. Edin., Vol. 120A, 1992, pp. 185-189. | MR | Zbl
,[T] Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, IV, R. J. Knops ed Pitman, 1979. | MR | Zbl
,[Y] Remarks on the set of quasi-conformal matrices in higher dimensions, Preprint, 1994.
,[Z1] A construction of quasiconvex functions with linear growth at infinity. Ann. Sc. Norm. Sup. Pisa Serie IV , Vol. XIX, 1992, pp. 313-326. | Numdam | MR | Zbl
,[Z2] On non-negative quasiconvex functions with unbounded zero sets, Proc. Royal Soc. Edin., Vol. 127A, 1997, pp. 411-422. | MR | Zbl
,[Z3] On some quasiconvex functions with linear growth, to appear in J. Convex Anal. | MR | Zbl
,