In this paper, we prove that the approximants naturally associated to a supremal functional -converge to it. This yields a lower semicontinuity result for supremal functionals whose supremand satisfy weak coercivity assumptions as well as a generalized Jensen inequality. The existence of minimizers for variational problems involving such functionals (together with a Dirichlet condition) then easily follows. In the scalar case we show the existence of at least one absolute minimizer (i.e. local solution) among these minimizers. We provide two different proofs of this fact relying on different assumptions and techniques.
Mots-clés : supremal functionals, lower semicontinuity, generalized Jensen inequality, absolute minimizer (AML, local minimizer), $L^p$ approximation
@article{COCV_2004__10_1_14_0, author = {Champion, Thierry and Pascale, Luigi De and Prinari, Francesca}, title = {$\Gamma $-convergence and absolute minimizers for supremal functionals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {14--27}, publisher = {EDP-Sciences}, volume = {10}, number = {1}, year = {2004}, doi = {10.1051/cocv:2003036}, mrnumber = {2084253}, zbl = {1068.49007}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2003036/} }
TY - JOUR AU - Champion, Thierry AU - Pascale, Luigi De AU - Prinari, Francesca TI - $\Gamma $-convergence and absolute minimizers for supremal functionals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 14 EP - 27 VL - 10 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2003036/ DO - 10.1051/cocv:2003036 LA - en ID - COCV_2004__10_1_14_0 ER -
%0 Journal Article %A Champion, Thierry %A Pascale, Luigi De %A Prinari, Francesca %T $\Gamma $-convergence and absolute minimizers for supremal functionals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 14-27 %V 10 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2003036/ %R 10.1051/cocv:2003036 %G en %F COCV_2004__10_1_14_0
Champion, Thierry; Pascale, Luigi De; Prinari, Francesca. $\Gamma $-convergence and absolute minimizers for supremal functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 14-27. doi : 10.1051/cocv:2003036. http://www.numdam.org/articles/10.1051/cocv:2003036/
[1] On the class of functionals which can be represented by a supremum. J. Convex Anal. 9 (2002) 225-236. | MR | Zbl
, and ,[2] Minimization Problems for the Functional . Ark. Mat. 6 (1965) 33-53. | MR | Zbl
,[3] Minimization Problems for the Functional . II. Ark. Mat. 6 (1966) 409-431. | MR | Zbl
,[4] Extension of Functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. | MR | Zbl
,[5] Minimization Problems for the Functional . III. Ark. Mat. 7 (1969) 509-512. | MR | Zbl
,[6] Viscosity solutions and analysis in . Nonlinear Anal. Differential Equations Control. Montreal, QC (1998) 1-60. Kluwer Acad. Publ., Dordrecht, NATO Sci. Ser. C Math. Phys. Sci. 528 (1999). | MR | Zbl
,[7] Lower Semicontinuity of functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 495-517. | EuDML | Numdam | MR | Zbl
, and ,[8] The Euler equation and absolute minimizers of functionals. Arch. Rational Mech. Anal. 157 (2001) 255-283. | MR | Zbl
, and ,[9] Limits as of and related extremal problems, Some topics in nonlinear PDEs. Turin (1989). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue (1991) 15-68. | MR
, and ,[10] Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. | Numdam | MR | Zbl
and ,[11] A remark on infinity harmonic functions, in Proc. of the USA-Chile Workshop on Nonlinear Analysis. Vina del Mar-Valparaiso (2000) 123-129. Electronic. Electron. J. Differential Equations Conf. 6. Southwest Texas State Univ., San Marcos, TX (2001). | MR | Zbl
and ,[12] Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differential Equations 13 (2001) 123-139. | MR | Zbl
, and ,[13] Direct methods in the calculus of variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1989). | MR | Zbl
,[14] An Introduction to -Convergence. Birkhauser, Basel, Progr. in Nonlinear Differential Equations Appl. 8 (1993). | MR | Zbl
,[15] A general theory of variational functionals. Topics in functional analysis (1980-81) 149-221. Quaderni, Scuola Norm. Sup. Pisa, Pisa (1981). | Zbl
and ,[16] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975) 842-850. | MR | Zbl
and ,[17] Dielectric Breakdown: Optimal bounds. Proc. Roy. Soc. London Sect. A 457 (2001) 2317-2335. | MR | Zbl
, and ,[18] On the lower semicontinuity of supremal functional. ESAIM: COCV 9 (2003) 135. | Numdam | MR | Zbl
and ,[19] Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm of the Gradient. Arch. Rational Mech. Anal. 123 (1993) 51-74. | MR | Zbl
,[20] Absolutely Minimizing Lipschitz Extensions on a metric space. An. Ac. Sc. Fenn. Mathematica 27 (2002) 57-67. | MR | Zbl
,[21] Characterization of Young Measures Generated by Gradients. Arch. Rational Mech. Anal. 115 (1991) 329-365. | MR | Zbl
and ,[22] Gradient Young Measures Generated by Sequences in Sobolev Spaces. J. Geom. Anal. 4 (1994) 59-90. | MR | Zbl
and ,[23] Variational models for microstructure and phase transitions. Calculus of variations and geometric evolution problems. Cetraro (1996) 85-210. Springer, Berlin, Lecture Notes in Math. 1713 (1999). | MR | Zbl
,[24] Parametrized measures and variational principles. Birkhäuser Verlag, Basel, Progr. in Nonlinear Differential Equations Appl. 30 (1997). | MR | Zbl
,Cité par Sources :