@article{AIHPC_2001__18_4_495_0, author = {Barron, E. N. and Jensen, R. R. and Wang, C. Y.}, title = {Lower semicontinuity of $L^\infty $ functionals}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {495--517}, publisher = {Elsevier}, volume = {18}, number = {4}, year = {2001}, zbl = {1034.49008}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2001__18_4_495_0/} }
TY - JOUR AU - Barron, E. N. AU - Jensen, R. R. AU - Wang, C. Y. TI - Lower semicontinuity of $L^\infty $ functionals JO - Annales de l'I.H.P. Analyse non linéaire PY - 2001 SP - 495 EP - 517 VL - 18 IS - 4 PB - Elsevier UR - http://www.numdam.org/item/AIHPC_2001__18_4_495_0/ LA - en ID - AIHPC_2001__18_4_495_0 ER -
Barron, E. N.; Jensen, R. R.; Wang, C. Y. Lower semicontinuity of $L^\infty $ functionals. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 4, pp. 495-517. http://www.numdam.org/item/AIHPC_2001__18_4_495_0/
[1] Minimization problems for the functional supxF(x,f(x),f′(x)), Ark. Mat. 6 (1965) 33-53. | Zbl
,[2] Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (28) (1967) 551-561. | MR | Zbl
,[3] Minimization problems for the functional supxF(x,f(x),f′(x)). III, Ark. Mat. 7 (1969) 509-512. | Zbl
,[4] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 63 (1977) 337-403. | MR | Zbl
,[5] Viscosity solutions and analysis in L∞, in: Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998), Kluwer Academic, Dordrecht, 1999, pp. 1-60. | Zbl
,[6] The Bellman equation for minimizing the maximum cost, Nonlinear Anal. 13 (9) (1989) 1067-1090. | MR | Zbl
, ,[7] Hopf-Lax-type formula for ut+H(u,Du)=0, J. Differential Equations 126 (1) (1996) 48-61. | Zbl
, , ,[8] Calculus of variations in L∞, Appl. Math. Optim. 35 (3) (1997) 237-263. | Zbl
, ,[9] Direct Methods in the Calculus of Variations, Springer Verlag, New York, 1989. | MR | Zbl
,[10] On lower semicontinuity of integral functionals, SIAM J. Control Optim. 15 (1977) 521-538. | MR | Zbl
,[11] Theory of Extremal Problems, North-Holland, Amsterdam, 1979. | MR | Zbl
, ,[12] Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rat. Mech. Anal. 123 (1993) 51-74. | MR | Zbl
,[13] Paramaterized Measures and Variational Principles, Birkhauser, Boston, 1997. | MR | Zbl
,[14] Rank-one quasiconvexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh 120A (1992) 185-189. | MR | Zbl
,