Everywhere regularity for vectorial functionals with general growth
ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 399-418.

We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models is

Fu= Ω a(x)[h|Du|] p(x) dx
with h a convex function with general growth (also exponential behaviour is allowed).

DOI : 10.1051/cocv:2003019
Classification : 49N60, 35J50
Mots clés : minimizers, regularity, nonstandard growth, exponential growth
@article{COCV_2003__9__399_0,
     author = {Mascolo, Elvira and Migliorini, Anna Paola},
     title = {Everywhere regularity for vectorial functionals with general growth},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {399--418},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2003},
     doi = {10.1051/cocv:2003019},
     mrnumber = {1988669},
     zbl = {1066.49023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2003019/}
}
TY  - JOUR
AU  - Mascolo, Elvira
AU  - Migliorini, Anna Paola
TI  - Everywhere regularity for vectorial functionals with general growth
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2003
SP  - 399
EP  - 418
VL  - 9
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2003019/
DO  - 10.1051/cocv:2003019
LA  - en
ID  - COCV_2003__9__399_0
ER  - 
%0 Journal Article
%A Mascolo, Elvira
%A Migliorini, Anna Paola
%T Everywhere regularity for vectorial functionals with general growth
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2003
%P 399-418
%V 9
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2003019/
%R 10.1051/cocv:2003019
%G en
%F COCV_2003__9__399_0
Mascolo, Elvira; Migliorini, Anna Paola. Everywhere regularity for vectorial functionals with general growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 399-418. doi : 10.1051/cocv:2003019. http://www.numdam.org/articles/10.1051/cocv:2003019/

[1] R. Aris, The mathematical theory of diffusion and reaction of permeable catalysts. Clarendon Press, Oxford (1975). | Zbl

[2] E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: The case 1<p<2. J. Math. Anal. Appl. 140 (1989) 115-135. | MR | Zbl

[3] E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth. Arch. Rational Mech. Anal. 156 (2001) 121-140. | MR | Zbl

[4] E. Acerbi and G. Mingione, Regularity results for quasiconvex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa 30 (2001). | Numdam | MR | Zbl

[5] V. Chiadò Piat and A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta Math. 93 (1997) 283-299. | MR | Zbl

[6] A. Coscia and G. Mingione, Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris 328 (1999) 363-368. | MR | Zbl

[7] A. Dall'Aglio, E. Mascolo and G. Papi, Local boundedness for minima of functionals with non standard growth conditions. Rend. Mat. 18 (1998) 305-326. | Zbl

[8] A. Dall'Aglio and E. Mascolo, L -estimates for a class of nonlinear elliptic systems with non standard growth. Atti Sem. Mat. Fis. Univ. Modena (to appear).

[9] F. Leonetti, E. Mascolo and F. Siepe, Everywhere regularity for a class of vectorial functionals under subquadratic general growth, Preprint. Dipartimento di Matematica “U. Dini”, University of Florence.

[10] M. Giaquinta, Multiple integrals in the calculus of variations and non linear elliptic systems. Princeton Univ. Press, Princeton NJ, Ann. Math. Stud. 105 (1983). | MR | Zbl

[11] M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57 (1986) 55-99. | MR | Zbl

[12] E. Giusti, Metodi diretti nel calcolo delle variazioni. UMI, Bologna (1994). | MR | Zbl

[13] P. Marcellini, Regularity and existence of solutions of elliptic equations with (p,q)-growth conditions. J. Differential Equations 90 (1991) 1-30. | MR | Zbl

[14] P. Marcellini, Regularity for elliptic equations with general growth conditions. J. Differential Equations 105 (1993) 296-333. | MR | Zbl

[15] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa 23 (1996) 1-25. | Numdam | MR | Zbl

[16] M. Marcus and V.J. Mizel, Continuity of certain Nemitsky operators on Sobolev spaces and chain rule. J. Anal. Math. 28 (1975) 303-334. | MR | Zbl

[17] E. Mascolo and G. Papi, Local boundedness of integrals of Calculus of Variations. Ann. Mat. Pura Appl. 167 (1994) 323-339. | MR | Zbl

[18] A.P. Migliorini, Everywhere regularity for a class of elliptic systems with p, q growth conditions. Rend. Istit. Mat. Univ. Trieste XXXI (1999) 203-234. | MR | Zbl

[19] A.P. Migliorini, Everywhere regularity for a class of elliptic systems with general growth conditions, Ph.D. Thesis. University of Florence, Italy (2000).

[20] J. Mosely, A two dimensional Dirichlet problem with an exponential nonlinearity. SIAM J. Math. Anal. 14 5 (1983) 719-735. | Zbl

[21] M. Růžička, Flow of shear dependent electrorheological fluids. C. R. Acad. Sci. Paris 329 (1999) 393-398. | MR | Zbl

[22] K.R. Rajagopal and M. Růžička, On the modeling of electrorheological materials. Mech. Res. Commun. 23 (1996) 401-407. | Zbl

[23] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977) 219-240. | MR | Zbl

[24] V.V. Zhikov, On Lavrentiev phenomenon. Russian J. Math. Phys. 3 (1995) 249-269. | MR | Zbl

Cité par Sources :