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EVERYWHERE REGULARITY FOR VECTORIAL FUNCTIONALS
WITH GENERAL GROWTH

Elvira Mascolo
1

and Anna Paola Migliorini
1

Abstract. We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus
of Variations in the vectorial case, where the energy density depends explicitly on the space variables
and has general growth with respect to the gradient. One of the models is

F (u) =

∫
Ω

a(x)[h (|Du|)]p(x)dx

with h a convex function with general growth (also exponential behaviour is allowed).
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1. Introduction

In this paper we study the local Lipschitz continuity for local minimizers of the integral functional

F (u) =
∫

Ω

f (x, Du(x)) dx, (1.1)

where Ω ⊂ Rn is an open set, f = f(x, ξ) : Ω × RnN → R is a Carathéodory function and Du = (uα
xi

) for
i = 1, . . . , n (n ≥ 2) and α = 1, . . . , N denotes the Jacobian matrix of the vector-valued function u : Ω → RN .

We say that u ∈ W 1,2
loc

(
Ω,RN

)
is a local minimizer of F if f (x, Du) ∈ L1

loc(Ω) and for every ϕ ∈ C1
0

(
Ω,RN

)
∫

spt ϕ

f (x, Du) dx ≤
∫

spt ϕ

f (x, Du + Dϕ) dx;

therefore u is also a weak solution of an elliptic system of the form

n∑
i=1

∂

∂xi
aα

i (x, Du) = 0, ∀α = 1, . . . , N (1.2)

where the vector field a = (aα
i ) : Ω×RnN → RnN is the gradient with respect to ξ of the function f .
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The regularity properties for minimizers of vectorial integrals have been widely investigated under ellipticity
and natural growth conditions and, in general, we can aspect only partial regularity, see [10, 12]. Nevertheless,
in the case f(x, ξ) = |ξ|p, (p ≥ 2), Uhlenbeck proved in [23] that the minimizers are in C1,α

loc

(
Ω,RN

)
. Partial

regularity is obtained when integrands have the form g(x, u, |ξ|) with |ξ|p behaviour by Giaquinta and Modica [11]
for p ≥ 2 and Acerbi and Fusco [2] for 1 < p < 2.

In the last years the interest in the study of regularity under non natural growth conditions has developed
new approaches. In [15] Marcellini considers integrals without growth conditions and proves Hölder continuity
of the gradient for minimizers when f(x, ξ) = g(|ξ|) with g positive and convex, satisfying:

g′(t)
t

is positive and increasing in (0, +∞) (1.3)

and a non oscillatory condition at infinity, i.e. for every α > 1 there exists a constant c = c(α) such that

g′′(t)t2α ≤ c[g(t)]α, ∀t > 1; (1.4)

these conditions imply at least quadratic growth but they allow exponential behaviour. The subquadratic case
is studied by Leonetti et al. [9].

In this paper we consider the non homogeneous case

f(x, ξ) = g(x, |ξ|) (1.5)

and we obtain the following regularity result:

Theorem 1.1. Let g = g(x, t) : Ω× [0, +∞) → [0, +∞) be a function of class C2, convex in t, such that ∀x ∈ Ω,
gt(x,t)

t is positive and increasing with respect to t. Assume that for every Ω0 ⊂⊂ Ω and α > 1 there exist two
positive constants c1 and c2, depending on α and on Ω0, such that ∀x ∈ Ω0

gtt(x, t)t2α ≤ c1[g(x, t)]α, ∀t ≥ 1,

|gtxs(x, t)| ≤ c2gt(x, t)[1 + gα−1
t (x, t)], ∀t ≥ 0, ∀s = 1, . . . , n.

Then every local minimizer u of the functional (1.1) with f given by (1.5) is in W 1,∞
loc

(
Ω,RN

)
and there exist

c > 0 and σ > 0 such that for every BR ⊂⊂ Ω

sup
BR/2

|Du| ≤ c

{∫
BR

[1 + g (x, |Du|)] dx

}1+σ

· (1.6)

Actually we prove the theorem under weak assumptions on g, (see (H1−H5) and Th. 2.1 of Sect. 2).
The most relevant fact is that the integrand f(x, ξ) may have exponential growth with respect to ξ, which

involves non uniformily elliptic systems. Our result includes energy densities with variable growth as∫
Ω

a(x)[h (|Du|)]p(x)dx, (1.7)

where h is a C2([0, +∞)) positive convex function satisfying conditions (1.3) and (1.4) with a, p ∈ W 1,∞
loc (Ω),

a(x), p(x) ≥ c > 0 a.e. x ∈ Ω; in particular we can take h(t) ∼ exp(tm) for t → +∞ and m > 0.
The interest in functionals (1.1) with general growth and non uniformily elliptic systems (1.2) is motivated

by several models which arise from different problems in mathematical physics: for example, the exponential
growth is present in combustion theory, see Mosely [20] and in reaction of gases, see Aris [1]. Recently, this
kind of systems has been used by Rajagopal and Růžička [21, 22] in their model for the behaviour of special
viscous fluids with the ability to change their mechanical properties in dependence on an applied electric field,
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the so-called electrorheological fluids. In fact, in the model proposed by Rajagopal and Růžička, the interaction
between the electric field and the fluid in motion is expressed in the coefficients of the system by a variable
exponent.

The particular case f(x, ξ) = |ξ|p(x) has been studied in the scalar case by ZhiKov [24], Mascolo and Papi [17]
and Chiadò Piat and Coscia [5] (see also Marcellini [13, 14] and Dall’Aglio et al. [7]). In the vectorial case, the
regularity result is due to Coscia and Mingione [6] (see also Acerbi and Mingione [3, 4] for related results).

For functionals with integrand of the type (1.5) Migliorini in [18, 19] proves everywhere regularity of local
minimizers in the context of (p, q)-growth conditions.

We improve these results to more general cases, like (1.7) and even to energies of the form

g(x, t) = exp(tp(x)) as t → +∞,

by using different techniques. We do not control the stored energy g(x, t) by means of power functions: indeed
we use its particular structure and properties directly (see also Dall’Aglio and Mascolo [8] for L∞-regularity).

The paper is organized as follows. Section 2 contains the statement of the general regularity theorem and
some applications. In Section 3 we consider functionals with controllable growth, i.e. uniformly elliptic systems,
and we prove for the gradient of minimizers an a priori estimate independent of the constants which appear
in the controllability assumptions. In Section 4, we carry out the estimate to the general case by means of
an approximation argument. More precisely, we construct a sequence of functions which converges to g such
that the corresponding functionals have controllable growth. By applying the a priori estimate, a procedure of
passage to the limit gives estimate (1.6) for the minimizer of the original functional.

2. Statement of the regularity theorem

Consider the integral functional

F (u) =
∫

Ω

f (x, Du(x)) dx, (2.1)

where Ω is an open subset of Rn (n ≥ 2), Du is the gradient of a vector-valued function u : Ω → RN , thus
Du = (uα

xi
) for i = 1, . . . , n and α = 1, . . . , N is a matrix in RnN , and f = f(x, ξ) : Ω × RnN → R is a

Carathéodory integrand.
We consider the case in which the stored energy f depends on the modulus of the matrix Du and satisfies

general growth conditions. More precisely, we assume that

f (x, ξ) = g (x, |ξ|) , (2.2)

where g (x, t) : Ω× [0, +∞) → [0, +∞) satisfies the following assumptions:

(H1) for a.e. x ∈ Ω, g(x, ·) is a positive convex function of class C2([0, +∞)) with gt(x,t)
t positive (strictly for

t > 0) and increasing with respect to t for a.e. x ∈ Ω.

Observe that, since gt(x,t)
t is increasing, then necessarily gt(x, 0) = 0 for a.e. x ∈ Ω. Moreover, without loss of

generality, by adding a measurable bounded function of x to g, we can reduce to the case g(x, 0) = 0 for a.e.
x ∈ Ω.

Clearly from (H1) it follows that

0 ≤ g(x, t) ≤ gt(x, t)t, (2.3)

0 ≤ gt(x, t) ≤ gtt(x, t)t, (2.4)

∀t > 0 and a.e. x ∈ Ω.



402 E. MASCOLO AND A.P. MIGLIORINI

(H2) For every Ω0 ⊂⊂ Ω, there is a positive constant Λ = Λ(Ω0) such that

gtt(x, t) ≤ Λ, ∀t ∈ [0, 1] and a.e. x ∈ Ω0, (2.5)

and a t0 ∈ (0, 1) and λ = λ(Ω0) > 0 such that

g(x, t0) ≥ λ, a.e. x ∈ Ω0. (2.6)

The non oscillatory behaviour is included in the following assumption:

(H3) For every Ω0 ⊂⊂ Ω and α > 1, there exists a positive constant c1 = c1(α, Ω0) such that

gtt(x, t)t2α ≤ c1[g(x, t)]α, ∀t ≥ 1 and a.e. x ∈ Ω0. (2.7)

(H4) For every t ∈ [0, +∞), gt(x, t) admits weak derivatives gtxs(x, t), (∀s = 1, . . . , n), which are Carathéodory
functions in Ω × [0, +∞) and locally integrable in Ω. Moreover, for every Ω0 ⊂⊂ Ω and α > 1 there exists a
positive constant c2 = c2(α, Ω0) such that

|gtxs(x, t)| ≤ c2gt(x, t)[1 + gα−1
t (x, t)], ∀t ≥ 0 and a.e. x ∈ Ω0. (2.8)

(H5) For every Ω0 ⊂⊂ Ω and Q0 compact subset of [1, +∞), gtt(x, t) ∈ L∞(Ω0 ×Q0).
By using (2.2) and (2.4), the following inequality holds (see [14, 15] for details):

gt (x, |ξ|)
|ξ| |λ|2 ≤

∑
i,j,α,β

fξα
i ξβ

j
(x, ξ) λα

i λβ
j ≤ gtt (x, |ξ|) |λ|2 , (2.9)

for a.e. x ∈ Ω , ∀ξ, λ ∈ RnN .
In the sequel, fixed Ω0 ⊂⊂ Ω and x0 ∈ Ω0, we denote by Bρ and BR balls with the same center x0 of radii ρ

and R respectively compactly contained in Ω0, (0 < ρ ≤ R < min{dist(x0, ∂Ω0), 1}).
Now we give the precise statement of our result.

Theorem 2.1. Consider the functional F in (2.1) with f (x, ξ) = g (x, |ξ|), where g satisfies (H1−H5). If u is
a local minimizer of F , then u is of class W 1,∞

loc

(
Ω,RN

)
and there exists σ = σ(n) > 0 such that

sup
Bρ

|Du| ≤ c

{∫
BR

[1 + g (x, |Du|)] dx

}1+σ

, (2.10)

where c = c(n, N, c1, c2, Λ, λ, R, ρ).

Let now h ∈ C2([0, +∞)) be a strictly increasing convex function satisfying (1.3) and (1.4). Let a(x), p(x) ∈
W 1,∞

loc (Ω) with a(x), p(x) ≥ c > 0 for a.e. x ∈ Ω. The function

g (x, |ξ|) = a(x)h (|ξ|)p(x) (2.11)

with h, a and p such that g(x, t) is of class C2 with respect to t, models in natural way the assumptions (H1−H5).
It is easy to check that in (2.5) Λ depends on h′′(1) and on an upper bound for a(x) and p(x), while in (2.8)
c2 = maxx∈Ω0 [|ax(x)p(x)| + |a(x)px(x)|] where |ax(x)| and |px(x)| denote the modulus of the gradient vectors
of a and p.

We observe explicitly that if h(t) = tm or h(t) = tm ln(t + 1) all the assumptions are satisfied provided
mp(x) ≥ 2 for a.e. x ∈ Ω.
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On the other hand, if we consider exponential growth as

h(t) ∼ exp(tm) as t → +∞, with m > 0,

h(t) ∼ tln t as t → +∞,

h(t) = exp(tm) with m ≥ 2,

the variable exponent can be choosen such that p(x) ≥ δ > 0 for a.e. x ∈ Ω.
Moreover,

g(x, t) = exp(tp(x)),
as t → +∞ or even every other finite composition of exponentials as for example

g(x, t) = exp(exp(tp1(x)))p2(x),

with pi(x) ≥ 2, (i = 1, 2), satisfies (H1−H5).

3. A PRIORI estimates

Marcellini in [15] proves some interesting inequalities in the case g(x, t) = g(t) where g is a positive, convex
function of class C2 satisfying (1.3) and the non oscillatory condition (1.4). Using assumptions (H1, H2)
and (H3), we can prove the same kind of inequalities for a.e. x ∈ Ω0 ⊂⊂ Ω. Moreover, it is easy to check
that the uniform boundedness assumptions in (H2) imply that the constants in the pointwise inequalities are
actually independent of x ∈ Ω0. These properties are contained in the following lemma (see Lems. 2.4, 2.6
and 2.7 of [15] for the proofs).

Lemma 3.1. Let Ω0 ⊂⊂ Ω and g satisfy (H1−H3).
(i) For every α > 1 there exists a constant c = c(α, Ω0) such that

gt(x, t)t2α−1 ≤ c[g(x, t)]α, gtt(x, t)tα ≤ c[gt(x, t)]α

∀t ≥ 1, a.e. x ∈ Ω0.

(ii) For every α > 1 there exists a constant c = c(α, Ω0) such that

1 + gtt(x, t)t2α ≤ c[1 + g(x, t)]α,

∀t ≥ 0, a.e. x ∈ Ω0.

(iii) For every β > 2 there exists a constant c = c(β, Ω0) such that ∀γ ≥ 0

1 + gtt(x, t)
(

tγ+1

γ + 1

)β

≤ c

[
1 +

∫ t

0

sγ

√
gt(x, s)

s
ds

]β

,

∀t ≥ 0, a.e. x ∈ Ω0.

The constants in (i–iii) depend on Λ and λ in (H2).

We make the following supplementary assumptions (which will be removed through the approximation method
in Sect. 4).

Assume that there exist positive constants m, M and N , depending on Ω0 ⊂⊂ Ω, such that

m ≤ gt(x, t)
t

≤ gtt(x, t) ≤ M (3.1)
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and
|gtxs(x, t)| ≤ N(1 + t2)

1
2 , (3.2)

∀t > 0 and for a.e. x ∈ Ω0. By taking in account (2.9, 3.1) implies the uniform ellipticity condition, i.e.

m |λ|2 ≤
∑

i,j,α,β

fξα
i ξβ

j
(x, ξ) λα

i λβ
j ≤ M |λ|2 , (3.3)

and, since
|fξα

i xs(x, ξ)| ≤ |gtxs(x, |ξ|)|, a.e. x ∈ Ω0, ∀ξ ∈ RnN , (3.4)
equation (3.2) gives

|fξα
i xs(x, ξ)| ≤ N(1 + |ξ|2) 1

2 , a.e. x ∈ Ω0, ∀ξ ∈ RnN .

First we present the following intermediate regularity result:

Proposition 3.2. Consider the functional F in (2.1) with f (x, ξ) = g (x, |ξ|) where g satisfies (H1−H4)
and (3.1, 3.2) and let u be a local minimizer of F . Then u ∈ W 1,∞

loc

(
Ω,RN

)
and, for every Ω0 ⊂⊂ Ω and

0 < ρ < R < 1 such that BR ⊂⊂ Ω0, there exists σ = σ(n) > 0 such that the following estimate holds

sup
Bρ

|Du| ≤ c

{∫
BR

[1 + g(x, |Du|)] dx

}1+σ

, (3.5)

where c depends on n, N , R, ρ and on the constants in (H1−H4).

The proof follows by collecting Lemmas 3.3 and 3.4 below.
In the sequel, we denote by 1∗ = n

n−1 and by 2∗ = 2n
n−2 if n > 2, while 2∗ is any real number strictly greater

than 1∗2, when n = 2.

Lemma 3.3. Let (H1−H4) and (3.1, 3.2) hold. If u is a local minimizer of F in (2.1), then u ∈ W 1,∞
loc

(
Ω,RN

)
and there exists c > 0, depending on n, N and on the constants in (H1−H4), such that the following estimate
holds

sup
Bρ

|Du| ≤ c

(R − ρ)n−1

{∫
BR

[
1 + |Du|1∗2gtt(x, |Du|)

] 2∗
1∗2

dx

} 1
1∗

·

Proof. Let u be a local minimizer of (2.1). By the left hand side of (3.3), u satisfies the Euler’s first variation:∫
Ω

∑
i,α

fξα
i

(x, Du)ϕα
xi

(x) dx = 0, ∀ϕ = (ϕα) ∈ W 1,2
0

(
Ω,RN

)
.

The technique of the difference quotient (see [10, 12] or in the context of non standard growth [15, 19]) gives
that u admits second derivatives, precisely u ∈ W 2,2

loc

(
Ω,RN

)
and satisfies the second variation

∫
Ω



∑

i,j,α,β

fξα
i ξβ

j
(x, Du)ϕα

xi
uβ

xsxj
+
∑
i,α

fξα
i xs (x, Du)ϕα

xi


dx = 0, (3.6)

∀s = 1, . . . , n, ∀ϕ = (ϕα) ∈ W 1,2
0

(
Ω,RN

)
.

Let Ω0 ⊂⊂ Ω and η be a positive function of class C1
0 (Ω0); fixed s ∈ {1, . . . , n}, we choose ϕα = η2uα

xs
Φ (|Du|)

for every α = 1, . . . , N , where Φ is a positive, increasing, bounded, Lipschitz continuous function defined in
[0, +∞) (in particular Φ and Φ′ are bounded, so that ϕ = (ϕα) ∈ W 1,2

0

(
Ω,RN

)
). Then

ϕα
xi

= 2ηηxiu
α
xs

Φ (|Du|) + η2uα
xsxi

Φ (|Du|) + η2uα
xs

Φ′ (|Du|) (|Du|)xi
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and from (3.6) we obtain

0 =
∫

Ω

η2Φ
∑

i,j,α,β

fξα
i ξβ

j
(x, Du)uα

xsxi
uβ

xsxj
dx +

∫
Ω

2ηΦ
∑

i,j,α,β

fξα
i ξβ

j
(x, Du) ηxiu

α
xs

uβ
xsxj

dx

+
∫

Ω

η2Φ′
∑

i,j,α,β

fξα
i ξβ

j
(x, Du)uα

xs
uβ

xsxj
(|Du|)xi

dx

+
∫

Ω

2ηΦ
∑
i,α

fξα
i xs (x, Du) ηxiu

α
xs

dx

+
∫

Ω

η2Φ
∑
i,α

fξα
i xs (x, Du)uα

xsxi
dx

+
∫

Ω

η2Φ′
∑
i,α

fξα
i xs (x, Du)uα

xs
(|Du|)xi

dx

= I1 + I2 + I3 + I4 + I5 + I6 (3.7)

(here and in the following we write only Φ and Φ′ instead of Φ(|Du|) and Φ′(|Du|)). We sum with respect to s
from 1 to n the previous equation but we still indicate the integrals with I1−I6. In the sequel we denote by c any
constant which may take different values from line to line and depends on the constants in assumptions (H1−H4)
and on the dimensions n and N .

Let us start with the estimate of the integral I2. By Cauchy–Schwartz inequality, Young’s inequality ab ≤
εa2 + b2

4ε , ∀ε > 0, and (2.9)

|I2| =
∣∣∣∣∣∣
∫

Ω

2ηΦ
∑

i,j,s,α,β

fξα
i ξβ

j
(x, Du) ηxiu

α
xs

uβ
xsxj

dx

∣∣∣∣∣∣

≤
∫

Ω

2ηΦ




∑
i,j,s,α,β

fξα
i ξβ

j
(x, Du) ηxiu

α
xs

ηxj u
β
xs




1
2



∑
i,j,s,α,β

fξα
i ξβ

j
(x, Du)uα

xsxi
uβ

xsxj




1
2

dx

≤ cε1

∫
Ω

η2Φ
∑

i,j,s,α,β

fξα
i ξβ

j
(x, Du)uα

xsxi
uβ

xsxj
dx +

c

4ε1

∫
Ω

|Dη|2 Φgtt (x, |Du|) |Du|2 dx. (3.8)

Let us consider I3. Since f (x, ξ) = g (x, |ξ|), we have

fξα
i

(x, ξ) =
gt (x, |ξ|)

|ξ| ξα
i

fξα
i ξβ

j
(x, ξ) =

(
gtt (x, |ξ|)
|ξ|2 − gt (x, |ξ|)

|ξ|3
)

ξβ
j ξα

i +
gt (x, |ξ|)

|ξ| δξα
i ξβ

j
.

Using (2.4) and the fact that gt (x, t) is positive, we can prove that

∑
i,j,s,α,β

fξα
i ξβ

j
(x, Du)uα

xs
uβ

xsxj
(|Du|)xi

≥ 0. (3.9)
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In fact

∑
i,j,s,α,β

fξα
i ξβ

j
(x, Du)uα

xs
uβ

xsxj
(|Du|)xi

=

(
gtt (x, |Du|)

|Du| − gt (x, |Du|)
|Du|2

)∑
i,s,α

[
uα

xi
(|Du|)xs

]2
+ gt (x, |Du|)

∑
i

(|Du|)2xi
≥ 0,

since (|Du|)xi
= 1

|Du|
∑

s,α uα
xs

uα
xixs

; hence (3.9) is proved and this easily implies that I3 ≥ 0. Consider now I4:
by assumption (H4) and by (3.4) and (2.4), we have

|I4| =
∣∣∣∣∣∣
∫

Ω

2ηΦ
∑
i,s,α

fξα
i xs (x, Du) ηxiu

α
xs

dx

∣∣∣∣∣∣
≤ c

∫
Ω

2ηΦgtt(x, |Du|)|Du| [1 + gα−1
t (x, |Du|)] ∑

i,s,α

∣∣ηxiu
α
xs

∣∣ dx

≤ c

∫
Ω

2η|Dη|Φgtt(x, |Du|)|Du|2 [1 + gα−1
t (x, |Du|)] dx. (3.10)

In order to estimate I5, let us observe that, taking in account (2.4, 2.8) becomes

|gtxs(x, t)| ≤ c2

{
gt(x, t)

t

} 1
2 {

gtt(x, t)t2
[
1 + g

2(α−1)
t (x, t)

]} 1
2

, (3.11)

thus, by using Cauchy–Schwartz inequality and Young’s inequality, we obtain

|I5| =
∣∣∣∣∣∣
∫

Ω

η2Φ
∑
i,s,α

fξα
i xs (x, Du)uα

xsxi
dx

∣∣∣∣∣∣ ≤
∫

Ω

η2Φ



∑
i,s,α

f2
ξα

i xs
(x, Du)




1
2

|D2u|dx

≤ c2

∫
Ω

η2Φ
{

gt(x, |Du|)
|Du| |D2u|2

} 1
2 {

gtt(x, |Du|)|Du|2
[
1 + g

2(α−1)
t (x, t)

]} 1
2

dx

≤ cε2

∫
Ω

η2Φ
gt(x, |Du|)
|Du| |D2u|2dx

+
c

4ε2

∫
Ω

η2Φgtt(x, |Du|)|Du|2
[
1 + g

2(α−1)
t (x, |Du|)

]
dx. (3.12)

Similarly

|I6| =
∣∣∣∣∣∣
∫

Ω

η2Φ′
∑
i,s,α

fξα
i xs (x, Du)uα

xs
(|Du|)xi

dx

∣∣∣∣∣∣ ≤ c1

∫
Ω

η2Φ′|Du|
{

gt(x, |Du|)
|Du|

∑
i

(|Du|)2xi

} 1
2

dx

×
{
gtt(x, |Du|)|Du|2

[
1 + g

2(α−1)
t (x, |Du|)

]} 1
2

dx

≤ cε3

∫
Ω

η2Φ′|Du|gt(x, |Du|)
|Du|

∑
i

(|Du|)2xi
dx

+
c

4ε3

∫
Ω

η2Φ′|Du|gtt(x, |Du|)|Du|2
[
1 + g

2(α−1)
t (x, |Du|)

]
dx. (3.13)
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Collecting (3.8–3.13) and choosing ε1 sufficiently small we have also∫
Ω

η2Φ
∑

i,j,s,α,β

fξα
i ξβ

j
(x, Du)uα

xsxi
uβ

xsxj
dx ≤ c

∫
Ω

|Dη|2 Φgtt (x, |Du|) |Du|2 dx

+ c

∫
Ω

2η|Dη|Φgtt(x, |Du|)|Du|2 [1 + gα−1
t (x, |Du|)] dx

+ cε2

∫
Ω

η2Φ
gt(x, |Du|)
|Du| |D2u|2dx

+
c

4ε2

∫
Ω

η2Φgtt(x, |Du|)|Du|2
[
1 + g

2(α−1)
t (x, |Du|)

]
dx

+ cε3

∫
Ω

η2Φ′|Du|gt(x, |Du|)
|Du|

∑
i

(|Du|)2xi
dx

+
c

4ε3

∫
Ω

η2Φ′|Du|gtt(x, |Du|)|Du|2
[
1 + g

2(α−1)
t (x, |Du|)

]
dx.

(3.14)

By choosing ε2 sufficiently small, the left inequality of (2.9), implies∫
Ω

η2Φ
gt(x, |Du|)
|Du| |D2u|2dx ≤ c

∫
Ω

|Dη|2 Φgtt (x, |Du|) |Du|2 dx

+ c

∫
Ω

2η|Dη|Φgtt(x, |Du|)|Du|2[1 + gα−1
t (x, |Du|)]dx

+ c

∫
Ω

η2Φgtt(x, |Du|)|Du|2
[
1 + g

2(α−1)
t (x, |Du|)

]
dx

+ cε3

∫
Ω

η2Φ′|Du|gt(x, |Du|)
|Du|

∑
i

(|Du|)2xi
dx

+
c

4ε3

∫
Ω

η2Φ′|Du|gtt(x, |Du|)|Du|2
[
1 + g

2(α−1)
t (x, |Du|)

]
dx. (3.15)

Now we allow only test function Φ satisfying

Φ′ (t) t ≤ cΦΦ (t) (3.16)

for a certain constant cΦ ≥ 0. Recalling that (|Du|)xi
= 1

|Du|
∑

s,α uα
xs

uα
xixs

, and using Cauchy–Schwartz
inequality, we see that

|D (|Du|)|2 =
∑

i

(|Du|)2xi
≤
∑
i,s,α

∣∣uα
xsxi

∣∣2 =
∣∣D2u

∣∣2 . (3.17)

We use the last inequality to estimate the first member in (3.15) and for small ε3 we get∫
Ω

η2Φ
gt(x, |Du|)
|Du|

∑
i

(|Du|)2xi
dx ≤ c

∫
Ω

|Dη|2 Φgtt (x, |Du|) |Du|2 dx

+ c

∫
Ω

2η|Dη|Φgtt(x, |Du|)|Du|2 [1 + gα−1
t (x, |Du|)] dx

+ c

∫
Ω

η2Φgtt(x, |Du|)|Du|2
[
1 + g

2(α−1)
t (x, |Du|)

]
dx

+ c(cΦ)2
∫

Ω

η2Φgtt(x, |Du|)|Du|2
[
1 + g

2(α−1)
t (x, |Du|)

]
dx. (3.18)
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On the other hand, since 2η |Dη|, |Dη|2, η2 are less then or equal to η2 + |Dη|2, using (3.17) we finally have

∫
Ω

η2Φ
gt(x, |Du|)
|Du| |D (|Du|)|2 dx ≤ c(1 + cΦ)2

∫
Ω

[η2 + |Dη|2]Φgtt(x, |Du|)|Du|2
[
1 + g

2(α−1)
t (x, |Du|)

]
dx,

(3.19)
where c = c(n, N, Ω0, Λ, λ, c1, c2). Let now Φ be a positive, increasing and locally Lipschitz continuous function
in [0, +∞) satisfying (3.16). Then we can approximate Φ by a sequence of Lipschitz functions Φr bounded with
Φ′r bounded, in the following way:

Φr (t) =

{
Φ (t) for t ∈ [0, r]

Φ (r) for t ∈ (r, +∞)
r ∈ N.

Since Φ′r (t) t ≤ cΦΦ (t), while Φ′r (r+) and Φ′r (r−) are uniformly bounded, the condition (3.16) holds for Φr

with the same constant cΦ, thus (3.19) holds Φr. By monotone convergence theorem, letting r tend to +∞, we
infer that (3.19) holds for such a Φ.

For t ∈ [0, +∞) and x ∈ Ω define

G (x, t) = 1 +
∫ t

0

√
Φ(s)

gt(x, s)
s

ds;

since the integrand function is increasing and by (2.4), we get

[G (x, t)]2 ≤
[
1 + t

√
Φ(t)

gt(x, t)
t

]2

≤ 2
[
1 + t2Φ(t)

gt(x, t)
t

]
≤ 2

[
1 + Φ(t)gtt(x, t)t2

]
.

Moreover, by (H4), ∀i = 1, . . . , n we have

[
∂

∂xi
G (x, t)

]2
=

[∫ t

0

√
Φ(s)

s

gtxi(x, s)
2
√

gt(x, s)
ds

]2

≤ c

[
t

√
Φ(t)

t
gt(x, t)

[
1 + gα−1

t (x, t)
]]2

≤ cΦ(t)gtt(x, t)t2
[
1 + g

2(α−1)
t (x, t)

]
.

We denote by DxG the weak gradient of G(x, t) with respect to x. The assumptions (H1) and (H4) ensure (see
for instance Marcus and Mizel [16]) that the chain rule holds and the previous estimates yield:

|D[ηG(x, |Du|)]|2 ≤ c|Dη|2[G(x, |Du|)]2 + cη2[Gt(x, |Du|)D(|Du|)]2 + cη2[DxG(x, |Du|)]2

≤ c|Dη|2 [1 + Φgtt(x, |Du|)|Du|2]+ cη2Φ
gt(x, |Du|)
|Du| |D(|Du|)|2

+ cη2Φgtt(x, |Du|)|Du|2
[
1 + g

2(α−1)
t (x, |Du|)

]
.

Therefore by (3.19), we deduce

∫
Ω

|D [ηG (x, |Du|)]|2 dx ≤ c(1 + cΦ)2
∫

Ω

[η2 + |Dη|2]Φ [1 + gtt(x, |Du|)|Du|2] [1 + g
2(α−1)
t (x, |Du|)

]
dx
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where c = c(n, N, Ω0, Λ, λ, c1, c2, α). Let 2∗ = 2n
n−2 for n > 2, while 2∗ equal to any fixed real number greater

than 1∗2 if n = 2. By Sobolev’s inequality:

{∫
Ω

η2∗ [G (x, |Du|)]2∗ dx

} 2
2∗
≤ c(1 + cΦ)2

∫
Ω

[η2 + |Dη|2] [1 + Φgtt(x, |Du|)|Du|2] [1 + g
2(α−1)
t (x, |Du|)

]
dx.

(3.20)
Choose Φ (t) = t2γ with γ ≥ 0, thus the condition (3.16) is satisfied with cΦ = 2γ. With this choice of Φ,
equation (3.20) reduces to

{∫
Ω

η2∗ [G (x, |Du|)]2∗ dx

} 2
2∗

≤ c(1 + γ)2
∫

Ω

[η2 + |Dη|2]
[
1 + |Du|2(γ+1)gtt(x, |Du|)

] [
1 + g

2(α−1)
t (x, |Du|)

]
dx.

(3.21)
By (iii) of Lemma 3.1, for a.e. x ∈ Ω0 we get

[G (x, t)]2
∗

=

[
1 +

∫ t

0

sγ

√
gt(x, s)

s
ds

]2∗

≥ c

[
1 +

(
tγ+1

γ + 1

)2∗

gtt(x, t)

]
,

thus (3.21) becomes

{∫
Ω

η2∗
[
1 + |Du|2∗(γ+1)gtt(x, |Du|)

]
dx

} 2
2∗

≤ c(1 + γ)4
∫

Ω

[η2 + |Dη|2]
[
1 + |Du|2(γ+1)gtt(x, |Du|)

] [
1 + g

2(α−1)
t (x, |Du|)

]
dx. (3.22)

Fixed ρ0 and R0 such that Bρ0 ⊂⊂ BR0 ⊂⊂ Ω0, for 0 < ρ0 < ρ < R < R0, let η be a positive test function
equal to 1 in Bρ, whose support is contained in BR, such that |Dη| ≤ 2

R−ρ . Set θ = γ + 1 and ε = 2(α − 1),
using (2.4) we have

{∫
Bρ

[
1 + |Du|2∗θgtt(x, |Du|)

]
dx

} 2
2∗

≤ c
θ4

(R− ρ)2

∫
BR

[
1 + |Du|2θgtt(x, |Du|)gε

tt(x, |Du|)|Du|ε]dx. (3.23)

For an arbitrary τ , 0 < τ < 1, using Hölder inequality we get

∫
BR

[
1 + |Du|2θgtt(x, |Du|)gε

tt(x, |Du|)|Du|ε]dx ≤ c

∫
BR

[
1 + |Du|2θg1−τ

tt (x, |Du|)gε+τ
tt (x, |Du|)|Du|ε]dx

≤ c

{∫
BR

[
1 + |Du| 2θ

1−τ gtt(x, |Du|)
]
dx

}1−τ

×
{∫

BR

[
1 + g

τ+ε
τ

tt (x, |Du|)|Du| ε
τ

]
dx

}τ

·

Moreover, by (H2)

1 + g
τ+ε

τ
tt (x, t)t

ε
τ ≤ c

[
1 + gtt(x, t)t

ε
τ+ε
] τ+ε

τ ≤ c
[
1 + gtt(x, t)t1

∗2
] τ+ε

τ
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and then by (3.22)

{∫
Bρ

[
1 + |Du|2∗θgtt(x, |Du|)

]
dx

} 2
2∗

≤ c
θ4

(R− ρ)2

{∫
BR

[
1 + |Du| 2θ

1−τ gtt(x, |Du|)
]
dx

}1−τ

×
{∫

BR

[
1 + gtt(x, |Du|)|Du|1∗2

] τ+ε
τ

dx

}τ

· (3.24)

To apply an iteration procedure, we need 2
1−τ < 2∗, then it is sufficient that τ < 2

n . Choose τ = 1
n , thus

2
1−τ = 1∗2 < 2∗ and let ε such that τ+ε

τ = 1 + εn = 2∗
1∗2 . Since u ∈ W 2,2

loc (Ω,RN ), then Du ∈ L2∗
loc(Ω,RnN ) and

recalling that gtt satisfies the supplementary assumption (3.1), we deduce that following integral is finite:

A =
∫

BR0

[
1 + gtt(x, |Du|)|Du|1∗2

] 2∗
1∗2

dx (3.25)

and (3.24) becomes

{∫
Bρ

[
1 + |Du|2∗θgtt(x, |Du|)

]
dx

} 1
2∗

≤ c
θ2

R− ρ

{∫
BR

[
1 + |Du|1∗2θgtt(x, |Du|)

]
dx

} 1
1∗2

A 1
2n . (3.26)

We define a sequence of exponents θj in the following way:

θ0 = 1

θj =
2∗

1∗2
θj−1, ∀j = 1, 2, . . . (3.27)

or equivalently θ0 = 1 and θj =
(

2∗
1∗2

)j

, ∀j = 1, 2, . . .

Define also ρj = ρ0 + R0−ρ0
2j for j = 0, 1, 2, . . . and

Aj =

{∫
Bρj

[
1 + |Du|1∗2θj gtt(x, |Du|)

]
dx

} 1
1∗2θj

and insert in (3.26) R = ρj , ρ = ρj+1 and θ = θj . Since R − ρ = R0−ρ0
2j+1 , we obtain

Aj+1 ≤
[

cθ2
j 2jA 1

2n

R0 − ρ0

] 1
θj

Aj .

By iteration we get

Aj+1 ≤
(

cA 1
2n

R0 − ρ0

)∑ j
k=0

1
θk

(
j∏

k=0

θ
1

θk

k

)2

2
∑ j

k=0
k

θk A0

(observe that A and A0 are finite, thus every Aj is finite). The product is finite and the series in the exponents
converge and after some calculation, using the definition (3.27) since

∞∑
k=0

1
θk

=
∞∑

k=0

(
1∗2
2∗

)k

= n− 1,
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and

1 + |Du|1∗2gtt(x, |Du|) ≤
[
1 + |Du|1∗2gtt(x, |Du|)

] 2∗
1∗2

,

by the definition of A we finally have

Aj+1 ≤ c

(R0 − ρ0)
n−1

{∫
BR0

[
1 + |Du|1∗2gtt(x, |Du|)

] 2∗
1∗2

dx

} 1
1∗

· (3.28)

We can easily prove that for every β > 0 and t ≥ 0 there exists a constant c = c(Ω0) such that

tβ ≤ c
[
1 + tβgtt(x, t)

]
, ∀t ≥ 0, a.e. x ∈ Ω0. (3.29)

In fact (2.3, 2.4) and (H2) imply that gtt(x, 1) ≥ g(x, t0) > λ > 0 for a.e. x ∈ Ω0. We can conclude

sup{|Du(x)| : x ∈ Bρ0} = lim
j→+∞

{∫
Bρ0

|Du(x)|2∗θj dx

} 1
2∗θj

≤ lim
j→+∞

{
c

∫
Bρj+1

[
1 + |Du|2∗θj gtt(x, |Du|)

]
dx

} 1
2∗θj

≤ c

(R0 − ρ0)
n−1

{∫
BR0

[
1 + |Du|1∗2gtt(x, |Du|)

] 2∗
1∗2

dx

} 1
1∗

·

The last inequality implies that u ∈ W 1,∞
loc

(
Ω,RN

)
and Lemma 3.3 is proved. �

Lemma 3.4. Let (H1−H4) and (3.1, 3.2) hold. If u is a local minimizer of (2.1), then there exist σ = σ(n) > 0
and α = α(n) > 0 such that

∫
Bρ

[
1 + |Du|1∗2gtt(x, |Du|)

] 2∗
1∗2

dx ≤ c

(R− ρ)α

{∫
BR

[1 + g(x, |Du|)] dx

}1∗+σ

,

where c depends on n, N and on the constants in (H1−H4).

Proof. Consider the inequality (3.21) in the proof of the previous lemma with γ = 0 (i.e. Φ = 1):

{∫
Ω

η2∗ [G (x, |Du|)]2∗ dx

} 2
2∗
≤ c

∫
Ω

[η2 + |Dη|2] [1 + |Du|2gtt(x, |Du|)] [1 + g
2(α−1)
t (x, |Du|)

]
dx.

Let 1 < δ ≤ 2∗
1∗2 and apply (iii) of Lemma 3.1 with β = 2∗

δ ≥ 1∗2 > 2:

[G(x, t)]2
∗

=

[
1 +

∫ t

0

√
gt(x, s)

s
ds

] 2∗
δ δ

≥ c
[
1 + t

2∗
δ gtt(x, t)

]δ
≥ c

[
1 + t1

∗2gtt(x, t)
]δ

.

Therefore, choosing the test function η and ε as in the proof of Lemma 3.3, we obtain

{∫
Bρ

[
1 + |Du|1∗2gtt(x, |Du|)

]δ
dx

} 2
2∗

≤ c

(R− ρ)2

∫
BR

[
1 + |Du|2gtt(x, |Du|)] [1 + gε

tt(x, |Du|)|Du|ε] dx

≤ c

(R− ρ)2

∫
BR

[
1 + |Du|1∗2gtt(x, |Du|)

]1+ε

dx. (3.30)
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Set
V (x) = 1 + |Du(x)|1∗2gtt(x, |Du(x)|);

equation (3.30) can be written in the form:

{∫
Bρ

V δdx

} 2
2∗

≤ c

(R − ρ)2

∫
BR

V 1+εdx.

We fix δ = 2∗
1∗2 > 1 and let γ > 2∗

2 > δ. By using Hölder inequality with exponents γ and γ
γ−1 , from (3.31) we

have{∫
Bρ

V δdx

} 2
2∗

≤ c

(R− ρ)2

∫
BR

V 1+εdx

=
c

(R− ρ)2

∫
BR

V
δ
γ V 1− δ

γ +εdx ≤ c

(R − ρ)2

{∫
BR

V δdx

} 1
γ
{∫

BR

V
γ−δ+εγ

γ−1 dx

} γ−1
γ

, (3.31)

or equivalently

∫
Bρ

V δdx ≤ c

(R− ρ)2∗

{∫
BR

V δdx

} 2∗
2γ

{[∫
BR

V
γ−δ+εγ

γ−1 dx

]γ−1
} 2∗

2γ

· (3.32)

Fixed R0 and ρ0 as before, we consider ρj = R0 − R0−ρ0
2j . We insert R = ρj and ρ = ρj−1 in (3.32): since

R− ρ = R0−ρ0
2j , then we obtain

∫
Bρj−1

V δdx ≤
{∫

Bρj

V δdx

} 2∗
2γ

c22∗j

(R0 − ρ0)2
∗



[∫

BR0

V
γ−δ+εγ

γ−1 dx

]γ−1



2∗
2γ

· (3.33)

Denote by Aj =
∫

Bρj
V δdx: by (3.1) and Lemma 3.3, Aj are uniformly bounded with respect to j. Thus (3.33)

becomes

Aj−1 ≤ A
2∗
2γ

j

c22∗j

(R0 − ρ0)2
∗



[∫

BR0

V
γ−δ+εγ

γ−1 dx

]γ−1



2∗
2γ

·

Iterating:

A0 ≤ A
( 2∗

2γ )j

j

∞∏
j=1

[
c22∗j

(R0 − ρ0)2
∗

]( 2∗
2γ )j



[∫

BR0

V
γ−δ+εγ

γ−1 dx

]γ−1



( 2∗
2γ )j

≤ A
( 2∗

2γ )j

j

c

(R0 − ρ0)2
∗ 2∗

2γ−2∗

{∫
BR0

V
γ−δ+εγ

γ−1 dx

}(γ−1) 2∗
2γ−2∗

, (3.34)

since
∑∞

j=1

(
2∗
2γ

)j

= 2∗
2γ−2∗ . Use (ii) of Lemma 3.1 with exponent 1∗ > 1, i.e.

1 + gtt(x, t)t1
∗2 ≤ c[1 + g(x, t)]1

∗
, (3.35)
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hence, in this case

V
γ−δ+εγ

γ−1 ≤
{

c [1 + g(x, |Du|)]1∗
} γ−δ+εγ

γ−1 ·
We can choose γ in such way

1∗
γ − δ + εγ

γ − 1
= 1. (3.36)

Recalling that δ = 2∗
1∗2 , an easy computation gives γ = 2δ

1+εn and for ε sufficiently small (i.e. α sufficiently close
to 1), γ > 2∗

2 as required. With this choice of γ, from (3.34) we infer

∫
Bρ0

V δdx ≤
{∫

Bρj

V δdx

}( 2∗
2γ )j

· c

(R0 − ρ0)
(2∗)2
2γ−2∗

{∫
BR0

[1 + g(x, |Du|)]dx

} 2∗(γ−1)
2γ−2∗

and letting j → +∞, we conclude

∫
Bρ0

[
1 + |Du|1∗2gtt(x, |Du|)

] 2∗
1∗2

dx ≤ c

(R0 − ρ0)
(2∗)2
2γ−2∗

{∫
BR0

[1 + g(x, |Du|)]dx

} 2∗(γ−1)
2γ−2∗

(3.37)

and the Lemma is proved with α(n) = (2∗)2

2γ−2∗ and 2∗(γ−1)
2γ−2∗ = 1∗ + σ with σ > 0. �

Remark 3.5. We underline the fact that the constant c in Propositon 3.2 does not depend on m, M and N
of (3.1) and (3.2).

Remark 3.6. It is not difficult to check that the result of Propositon 3.2 holds even if we assume g of class
W 2,∞

loc with respect to t for a.e. x ∈ Ω instead of class C2.

4. Approximation and proof of the Theorem 2.1

In this section we will prove the estimate (3.5) of Proposition 3.2 for minimizers of our original functional
F and then we have to remove the supplementary assumptions (3.1) and (3.2). The main ingredients are an
approximation procedure and then a passage to the limit similar to the ones used by Marcellini in Sections 4
and 5 of [15], modified in order to handle the dependence on x of the integrand.

Let Ω0 ⊂⊂ Ω and g satisfy (H1−H5) of Section 2. We remember that, by (H1) and (H2):

g(x, 0) = gt(x, 0) = 0 and gt(x, 1) ≥ g(x, 1) ≥ λ > 0, a.e. x ∈ Ω0.

For t ∈ (0, +∞) and x ∈ Ω, set

a(x, t) =
gt(x, t)

t
(4.1)

which is positive, increasing and a(x, 1) ≥ λ > 0 a.e. x ∈ Ω0.
From assumption (H1), it follows that a(x, t) > 0 if t > 0. For every k ∈ N, let tk = 1

k and define the
sequence of functions

ak(x, t) =




a(x, tk) for t ∈ [0, tk)

a(x, t) for t ∈ [tk, k]

a(x, k) for t ∈ (k, +∞).

For every k ∈ N, ak(x, t) is continuous and increasing with respect to t and satisfies

a(x, t) ≤ ak(x, 1) = a(x, 1) ≤ Λ, a.e. x ∈ Ω0, ∀t ∈ [0, 1]. (4.2)
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Consider the function gk(x, t) given by

gk(x, t) =
∫ t

0

ak(x, s)sds, a.e. x ∈ Ω, ∀t ∈ [0, +∞). (4.3)

By definition, it follows that fixed k0, for every t ∈ [0, k0] and k ≥ k0 we have

0 ≤ gk0(x, t) − gk(x, t) ≤ 1
2k2

0

a(x, 1), a.e. x ∈ Ω0. (4.4)

Moreover gk(x, t) converges pointwise to g(x, t) for a.e. x ∈ Ω and t ≥ 0.
Our next goal is to prove that gk satisfies assumptions (H1−H4) with constants independent of k.

Lemma 4.1. Let g(x, t) satisfy (H1−H5) and let gk(x, t) defined as in (4.3). Then, for every Ω0 ⊂⊂ Ω, gk

satisfies (H1) and (H2) for k sufficiently large, with constants independent of k. Moreover:
(i) for every k ∈ N, there exist mk and Mk > 0 such that

mk ≤ gk
t (x, t)

t
≤ gk

tt(x, t) ≤ Mk (4.5)

∀t > 0 and a.e. x ∈ Ω0, where gk
tt(x, k) denotes the right second derivatives of gk;

(ii) there exists a constant L = L(Ω0) such that

gk(x, t) ≤ L[1 + g(x, t)] (4.6)

∀k ∈ N, t ≥ 0 and a.e. x ∈ Ω0;
(iii) for every α > 1 there exists C1 = C1(α, Ω0) such that

gk
tt(x, t)t2α ≤ C1[gk(x, t)]α (4.7)

∀k ∈ N, t ≥ 1 and a.e. x ∈ Ω0;
(iv) for every k ∈ N, there exists a constant Nk such that

|gk
txs

(x, t)| ≤ Nk(1 + t2)
1
2 (4.8)

∀t ≥ 0 and a.e. x ∈ Ω0.
For every α > 1, there exists C2 = C2(α, Ω0) such that

∣∣gk
txs

(x, t)
∣∣ ≤ C2g

k
t (x, t)

[
1 +

(
gk

t

)α−1
(x, t)

]
(4.9)

∀k ∈ N, t ≥ 0 and a.e. x ∈ Ω0.

Proof. Since gk
t (x, t) = ak(x, t)t is increasing with respect to t, then gk(x, t) is convex with respect to t. Moreover

gk(x, t) and gk
t (x, t) are Carathéodory functions in Ω × [0, +∞) and gk(x, t) is of class C1 with respect to t.

Since

gk
tt(x, t) =




a(x, tk) for t ∈ [0, tk)

gtt(x, t) for t ∈ [tk, k]

a(x, k) for t ∈ (k, +∞)

(4.10)

we have, taking into account (H5), that gk(x, ·) ∈ W 2,∞
loc for a.e. x ∈ Ω. By construction ak(x, t) = gk

t (x,t)
t is

increasing, thus (H1) is satisfied. It is very easy to show that gk
tt(x, t) ≤ Λ′ for a.e. x ∈ Ω0 and ∀t ∈ [0, 1] with
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Λ′ independent of k; moreover, for k sufficiently large gk(x, t0) = g(x, t0), thus (H2) holds. Let us prove (i).
Fixed x ∈ Ω0, since ak(x, t) = gk

t (x,t)
t is increasing and from the definition of tk we have

0 < mk = min
x∈Ω0

a(x, tk) ≤ ak(x, t) =
gk

t (x, t)
t

≤ gk
tt(x, t)

∀t > 0. By taking in account (H5), set

Mk = max
{‖a(x, 1)‖L∞(Ω0), ‖gtt(x, t)‖L∞(Ω0×[1,k]), ‖a(x, k)‖L∞(Ω0)

}
,

thus (4.5) holds.
In order to prove (ii) and (iii), let us show that ∀k ∈ N and a.e. x ∈ Ω0 the following inequalities hold:

g(x, 1) ≤ gk(x, 1); (4.11)

gk(x, t) ≤ a(x, 1) + g(x, t) ∀t ∈ [0, +∞); (4.12)

gk(x, t) ≥ g(x, t) ∀t ∈ [1, k); (4.13)

If t ∈ [0, 1], it is clear that a(x, t) ≤ ak(x, t) ≤ a(x, 1). By using (4.1) and (4.3), we obtain

gk(x, 1) = gk(x, 1)− gk(x, 0) =
∫ 1

0

ak(x, t)tdt ≥
∫ 1

0

a(x, t)tdt = g(x, 1)− g(x, 0) = g(x, 1)

and (4.11) is proved. If t ∈ [0, 1] we have

gk(x, t) =
∫ t

0

ak(x, s)sds ≤ a(x, 1).

If t ≥ 1 we have

gk
t (x, t) = ak(x, t)t ≤ a(x, t)t = gt(x, t)

and thus ∀t ∈ [0, +∞)

gk(x, t) = gk(x, 1) +
∫ t

1

ak(x, s)sds ≤ a(x, 1) + g(x, 1) +
∫ t

1

a(x, s)sds = a(x, 1) + g(x, t)

and (4.12) is proved. By collecting (4.11) and (4.12), we have

gk(x, t) ≤ 2[1 + a(x, 1)][1 + g(x, t)]

which implies (ii) since 1 + a(x, 1) = 1 + gt(x, 1) ≤ 1 + Λ(Ω0) = L.
In order to prove (4.13) we observe that if t ∈ [1, k), by (4.11), we have

gk(x, t) =
∫ 1

0

ak(x, s)sds +
∫ t

1

a(x, s)sds = gk(x, 1) + g(x, t)− g(x, 1) ≥ g(x, t).

Let us prove (iii): when t ∈ [1, k] we use (H3) and (4.13)

gk
tt(x, t)t2α = gtt(x, t)t2α ≤ c[g(x, t)]α ≤ c[gk(x, t)]α,
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while for t ∈ (k, +∞), by (i) of Lemma 3.1 we have

gk
tt(x, t)t2α = gt(x, k)k2α−1 t2α

k2α
≤ c[g(x, k)]α

t2α

k2α
·

By proceeding as in the proof of Lemma 4.3 of Marcellini [15], it is possible to show that g(x, k) t2

k2 ≤ 2gk(x, t).
Thus

gk
tt(x, t)t2α ≤ c2α[gk(x, t)]α,

and (4.7) is proved.
Now we prove (iv). For each fixed t > 0, the functions gk

t (x, t) have weak derivatives with respect to xs,
gk

txs
(x, t), which are Carathéodory functions in Ω× [0, +∞) and locally summable in Ω. If t ∈ [0, tk), by (H4)

|gk
txs

(x, t)| = |axs(x, tk)|t =
∣∣∣∣gtxs(x, tk)

t

tk

∣∣∣∣ ≤ c2
gt(x, tk)

tk
t
[
1 + gα−1

t (x, tk)
]

≤ c2a
k(x, t)t

[
1 + gα−1

t (x, 1)
] ≤ cgk

t (x, t)
[
1 +

(
gk

t

)α−1
(x, t)

]
,

where c depends on Λ. If t ∈ [tk, k]

|gk
txs

(x, t)| = |gtxs(x, t)| ≤ c2gt(x, t)
[
1 + gα−1

t (x, t)
] ≤ c2g

k
t (x, t)

[
1 +

(
gk

t

)α−1
(x, t)

]
.

If t ∈ [k, +∞)

|gk
txs

(x, t)| = |axs(x, k)|t = |gtxs(x, k)| t
k
≤ c2gt(x, k)

t

k

[
1 + gα−1

t (x, k)
]

(4.14)

thus

|gk
txs

(x, t)| ≤ c2gt(x, k)
t

k

[
1 +

(
gt(x, k)t

k

)α−1(
k

t

)α−1
]
≤ c2g

k
t (x, t)

[
1 +

(
gk

t

)α−1
(x, t)

]

and (4.9) is proved.
Finally, fixed α0 > 1, for t ∈ [0, tk),

|gk
txs

(x, t)| ≤ ca(x, 1)
[
1 + gα0−1

t (x, 1)
]
] ≤ C,

for t ∈ [tk, k],

|gk
txs

(x, t)| ≤ c max
x∈Ω0

{
gt(x, k)

[
1 + gα0−1

t (x, k)
]}

= Nk,

for t ∈ [k, +∞), equation (4.14) gives

|gk
txs

(x, t)| ≤ c
gt(x, k)

k
t
[
1 + gα0−1

t (x, k)
] ≤ Nk

k
(1 + t2)

1
2

and (4.8) holds. �

Proof of Theorem 2.1. Let u be a local minimizer of (2.1). For every k ∈ N we consider the functional∫
Ω

gk (x, |Du|) dx, (4.15)
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with gk defined as in (4.3). Let BR ⊂⊂ Ω0 ⊂⊂ Ω: the Dirichlet problem

inf
{∫

BR

gk (x, |Dv|) dx, v ∈ u + W 1,2
0

(
BR,RN

)}

has one solution uk, i.e. ∫
BR

gk (x, |Duk|) dx ≤
∫

BR

gk (x, |Dv|) dx

for every v ∈ u + W 1,2
0

(
BR,RN

)
. In particular

∫
BR

gk (x, |Duk|) dx ≤
∫

BR

gk (x, |Du|) dx. (4.16)

By assumption (H3) (see (iii) of Lem. 3.1) we have that

t2 ≤ c[1 + gk(x, t)], ∀t ≥ 0, a.e. x ∈ Ω0

and then (4.16) and (4.6) give
∫

BR

|Duk|2dx ≤ c

∫
BR

[
1 + gk(x, |Du|)] dx ≤ c

∫
BR

[1 + g(x, |Du|)] dx,

which implies that, up to a subsequence, (uk) converges weakly in u + W 1,2
0

(
BR,RN

)
to a function w.

By Lemma 4.1, the functional in (4.15) satisfies the assumptions of Proposition 3.2 and then there exist
σ > 0 and c independent on k such that ∀ρ < R

sup
Bρ

|Duk| ≤ c

{∫
BR

[1 + gk (x, |Duk|)]dx

}1+σ

·

Moreover, by (4.16) and (4.6), we have that for every k ∈ N

sup
Bρ

|Duk| ≤ c

{∫
BR

[1 + gk (x, |Du|)]dx

}1+σ

≤ c

{∫
BR

[1 + g (x, |Du|)]dx

}1+σ

· (4.17)

The last inequality gives that (uk), up to a subsequence, converges to the function w in the weak* topology of
W 1,∞

loc (BR,RN). Let k0 be such that ‖Duk‖L∞ ≤ k0. By (4.4) and (4.16), we infer that for k ≥ k0∫
Bρ

gk0 (x, |Duk|) dx ≤
∫

Bρ

gk (x, |Duk|) dx +
1

2k2
0

∫
Bρ

a (x, 1) dx ≤
∫

BR

gk (x, |Du|) dx +
c

k2
0

·

By lower semicontinuity and using the dominated convergence theorem, as k → +∞ we have∫
Bρ

gk0 (x, |Dw|) dx ≤
∫

BR

g (x, |Du|) dx +
c

k2
0

and then as k0 → +∞ and ρ → R we get∫
BR

g (x, |Dw|) dx ≤
∫

BR

g (x, |Du|) dx.
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Therefore w is a local minimizer of F and the strictly convexity of the functional gives u = w. Finally (4.17)
gives

‖Du‖L∞(Bρ,RnN ) ≤ c

{∫
BR

[1 + g (x, |Du|)]dx

}1+σ

and thus the theorem is proved.
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